discard """ action: run output: ''' [Suite] random int [Suite] random float [Suite] cumsum [Suite] random sample [Suite] ^ ''' matrix:"; -d:nimTmathCase2 -d:danger --passc:-ffast-math" """ # xxx: fix bugs for js then add: targets:"c js" import math, random, os import unittest import sets, tables suite "random int": test "there might be some randomness": var set = initHashSet[int](128) for i in 1..1000: incl(set, rand(high(int))) check len(set) == 1000 test "single number bounds work": var rand: int for i in 1..1000: rand = rand(1000) check rand < 1000 check rand > -1 test "slice bounds work": var rand: int for i in 1..1000: rand = rand(100..1000) when defined(js): # xxx bug: otherwise fails check rand <= 1000 else: check rand < 1000 check rand >= 100 test " again gives new numbers": var rand1 = rand(1000000) when not defined(js): os.sleep(200) var rand2 = rand(1000000) check rand1 != rand2 suite "random float": test "there might be some randomness": var set = initHashSet[float](128) for i in 1..100: incl(set, rand(1.0)) check len(set) == 100 test "single number bounds work": var rand: float for i in 1..1000: rand = rand(1000.0) check rand < 1000.0 check rand > -1.0 test "slice bounds work": var rand: float for i in 1..1000: rand = rand(100.0..1000.0) check rand < 1000.0 check rand >= 100.0 test " again gives new numbers": var rand1:float = rand(1000000.0) when not defined(js): os.sleep(200) var rand2:float = rand(1000000.0) check rand1 != rand2 suite "cumsum": test "cumsum int seq return": let counts = [ 1, 2, 3, 4 ] check counts.cumsummed == [ 1, 3, 6, 10 ] test "cumsum float seq return": let counts = [ 1.0, 2.0, 3.0, 4.0 ] check counts.cumsummed == [ 1.0, 3.0, 6.0, 10.0 ] test "cumsum int in-place": var counts = [ 1, 2, 3, 4 ] counts.cumsum check counts == [ 1, 3, 6, 10 ] test "cumsum float in-place": var counts = [ 1.0, 2.0, 3.0, 4.0 ] counts.cumsum check counts == [ 1.0, 3.0, 6.0, 10.0 ] suite "random sample": test "non-uniform array sample unnormalized int CDF": let values = [ 10, 20, 30, 40, 50 ] # values let counts = [ 4, 3, 2, 1, 0 ] # weights aka unnormalized probabilities var histo = initCountTable[int]() let cdf = counts.cumsummed # unnormalized CDF for i in 0 ..< 5000: histo.inc(sample(values, cdf)) check histo.len == 4 # number of non-zero in `counts` # Any one bin is a binomial random var for n samples, each with prob p of # adding a count to k; E[k]=p*n, Var k=p*(1-p)*n, approximately Normal for # big n. So, P(abs(k - p*n)/sqrt(p*(1-p)*n))>3.0) =~ 0.0027, while # P(wholeTestFails) =~ 1 - P(binPasses)^4 =~ 1 - (1-0.0027)^4 =~ 0.01. for i, c in counts: if c == 0: check values[i] notin histo continue let p = float(c) / float(cdf[^1]) let n = 5000.0 let expected = p * n let stdDev = sqrt(n * p * (1.0 - p)) check abs(float(histo[values[i]]) - expected) <= 3.0 * stdDev test "non-uniform array sample normalized float CDF": let values = [ 10, 20, 30, 40, 50 ] # values let counts = [ 0.4, 0.3, 0.2, 0.1, 0 ] # probabilities var histo = initCountTable[int]() let cdf = counts.cumsummed # normalized CDF for i in 0 ..< 5000: histo.inc(sample(values, cdf)) check histo.len == 4 # number of non-zero in ``counts`` for i, c in counts: if c == 0: check values[i] notin histo continue let p = float(c) / float(cdf[^1]) let n = 5000.0 let expected = p * n let stdDev = sqrt(n * p * (1.0 - p)) # NOTE: like unnormalized int CDF test, P(wholeTestFails) =~ 0.01. check abs(float(histo[values[i]]) - expected) <= 3.0 * stdDev suite "^": test "compiles for valid types": check: compiles(5 ^ 2) check: compiles(5.5 ^ 2) check: compiles(5.5 ^ 2.int8) check: compiles(5.5 ^ 2.uint) check: compiles(5.5 ^ 2.uint8) check: not compiles(5.5 ^ 2.2) block: when not defined(js): # Check for no side effect annotation proc mySqrt(num: float): float {.noSideEffect.} = # xxx unused return sqrt(num) # check gamma function assert(gamma(5.0) == 24.0) # 4! assert(lgamma(1.0) == 0.0) # ln(1.0) == 0.0 assert(erf(6.0) > erf(5.0)) assert(erfc(6.0) < erfc(5.0)) # Function for approximate comparison of floats proc `==~`(x, y: float): bool = (abs(x-y) < 1e-9) block: # prod doAssert prod([1, 2, 3, 4]) == 24 doAssert prod([1.5, 3.4]) == 5.1 let x: seq[float] = @[] doAssert prod(x) == 1.0 block: # round() tests # Round to 0 decimal places doAssert round(54.652) ==~ 55.0 doAssert round(54.352) ==~ 54.0 doAssert round(-54.652) ==~ -55.0 doAssert round(-54.352) ==~ -54.0 doAssert round(0.0) ==~ 0.0 block: # splitDecimal() tests doAssert splitDecimal(54.674).intpart ==~ 54.0 doAssert splitDecimal(54.674).floatpart ==~ 0.674 doAssert splitDecimal(-693.4356).intpart ==~ -693.0 doAssert splitDecimal(-693.4356).floatpart ==~ -0.4356 doAssert splitDecimal(0.0).intpart ==~ 0.0 doAssert splitDecimal(0.0).floatpart ==~ 0.0 block: # trunc tests for vcc doAssert(trunc(-1.1) == -1) doAssert(trunc(1.1) == 1) doAssert(trunc(-0.1) == -0) doAssert(trunc(0.1) == 0) #special case doAssert(classify(trunc(1e1000000)) == fcInf) doAssert(classify(trunc(-1e1000000)) == fcNegInf) when not defined(nimTmathCase2): doAssert(classify(trunc(0.0/0.0)) == fcNan) doAssert(classify(trunc(0.0)) == fcZero) #trick the compiler to produce signed zero let f_neg_one = -1.0 f_zero = 0.0 f_nan = f_zero / f_zero doAssert(classify(trunc(f_neg_one*f_zero)) == fcNegZero) doAssert(trunc(-1.1'f32) == -1) doAssert(trunc(1.1'f32) == 1) doAssert(trunc(-0.1'f32) == -0) doAssert(trunc(0.1'f32) == 0) doAssert(classify(trunc(1e1000000'f32)) == fcInf) doAssert(classify(trunc(-1e1000000'f32)) == fcNegInf) when not defined(nimTmathCase2): doAssert(classify(trunc(f_nan.float32)) == fcNan) doAssert(classify(trunc(0.0'f32)) == fcZero) block: # sgn() tests assert sgn(1'i8) == 1 assert sgn(1'i16) == 1 assert sgn(1'i32) == 1 assert sgn(1'i64) == 1 assert sgn(1'u8) == 1 assert sgn(1'u16) == 1 assert sgn(1'u32) == 1 assert sgn(1'u64) == 1 assert sgn(-12342.8844'f32) == -1 assert sgn(123.9834'f64) == 1 assert sgn(0'i32) == 0 assert sgn(0'f32) == 0 assert sgn(NegInf) == -1 assert sgn(Inf) == 1 assert sgn(NaN) == 0 block: # fac() tests try: discard fac(-1) except AssertionDefect: discard doAssert fac(0) == 1 doAssert fac(1) == 1 doAssert fac(2) == 2 doAssert fac(3) == 6 doAssert fac(4) == 24 block: # floorMod/floorDiv doAssert floorDiv(8, 3) == 2 doAssert floorMod(8, 3) == 2 doAssert floorDiv(8, -3) == -3 doAssert floorMod(8, -3) == -1 doAssert floorDiv(-8, 3) == -3 doAssert floorMod(-8, 3) == 1 doAssert floorDiv(-8, -3) == 2 doAssert floorMod(-8, -3) == -2 doAssert floorMod(8.0, -3.0) ==~ -1.0 doAssert floorMod(-8.5, 3.0) ==~ 0.5 block: # log doAssert log(4.0, 3.0) ==~ ln(4.0) / ln(3.0) doAssert log2(8.0'f64) == 3.0'f64 doAssert log2(4.0'f64) == 2.0'f64 doAssert log2(2.0'f64) == 1.0'f64 doAssert log2(1.0'f64) == 0.0'f64 doAssert classify(log2(0.0'f64)) == fcNegInf doAssert log2(8.0'f32) == 3.0'f32 doAssert log2(4.0'f32) == 2.0'f32 doAssert log2(2.0'f32) == 1.0'f32 doAssert log2(1.0'f32) == 0.0'f32 doAssert classify(log2(0.0'f32)) == fcNegInf template main = # xxx wrap all under `main` so it also gets tested in vm. block: # isNaN doAssert NaN.isNaN doAssert not Inf.isNaN doAssert isNaN(Inf - Inf) main() static: main()