discard """ action: run output: '''[Suite] random int [Suite] random float [Suite] cumsum [Suite] random sample [Suite] ^ ''' """ import math, random, os import unittest import sets, tables suite "random int": test "there might be some randomness": var set = initHashSet[int](128) for i in 1..1000: incl(set, random(high(int))) check len(set) == 1000 test "single number bounds work": var rand: int for i in 1..1000: rand = random(1000) check rand < 1000 check rand > -1 test "slice bounds work": var rand: int for i in 1..1000: rand = random(100..1000) check rand < 1000 check rand >= 100 test " again gives new numbers": var rand1 = random(1000000) os.sleep(200) var rand2 = random(1000000) check rand1 != rand2 suite "random float": test "there might be some randomness": var set = initSet[float](128) for i in 1..100: incl(set, random(1.0)) check len(set) == 100 test "single number bounds work": var rand: float for i in 1..1000: rand = random(1000.0) check rand < 1000.0 check rand > -1.0 test "slice bounds work": var rand: float for i in 1..1000: rand = random(100.0..1000.0) check rand < 1000.0 check rand >= 100.0 test " again gives new numbers": var rand1:float = random(1000000.0) os.sleep(200) var rand2:float = random(1000000.0) check rand1 != rand2 suite "cumsum": test "cumsum int seq return": let counts = [ 1, 2, 3, 4 ] check counts.cumsummed == [ 1, 3, 6, 10 ] test "cumsum float seq return": let counts = [ 1.0, 2.0, 3.0, 4.0 ] check counts.cumsummed == [ 1.0, 3.0, 6.0, 10.0 ] test "cumsum int in-place": var counts = [ 1, 2, 3, 4 ] counts.cumsum check counts == [ 1, 3, 6, 10 ] test "cumsum float in-place": var counts = [ 1.0, 2.0, 3.0, 4.0 ] counts.cumsum check counts == [ 1.0, 3.0, 6.0, 10.0 ] suite "random sample": test "non-uniform array sample unnormalized int CDF": let values = [ 10, 20, 30, 40, 50 ] # values let counts = [ 4, 3, 2, 1, 0 ] # weights aka unnormalized probabilities var histo = initCountTable[int]() let cdf = counts.cumsummed # unnormalized CDF for i in 0 ..< 5000: histo.inc(sample(values, cdf)) check histo.len == 4 # number of non-zero in `counts` # Any one bin is a binomial random var for n samples, each with prob p of # adding a count to k; E[k]=p*n, Var k=p*(1-p)*n, approximately Normal for # big n. So, P(abs(k - p*n)/sqrt(p*(1-p)*n))>3.0) =~ 0.0027, while # P(wholeTestFails) =~ 1 - P(binPasses)^4 =~ 1 - (1-0.0027)^4 =~ 0.01. for i, c in counts: if c == 0: check values[i] notin histo continue let p = float(c) / float(cdf[^1]) let n = 5000.0 let expected = p * n let stdDev = sqrt(n * p * (1.0 - p)) check abs(float(histo[values[i]]) - expected) <= 3.0 * stdDev test "non-uniform array sample normalized float CDF": let values = [ 10, 20, 30, 40, 50 ] # values let counts = [ 0.4, 0.3, 0.2, 0.1, 0 ] # probabilities var histo = initCountTable[int]() let cdf = counts.cumsummed # normalized CDF for i in 0 ..< 5000: histo.inc(sample(values, cdf)) check histo.len == 4 # number of non-zero in ``counts`` for i, c in counts: if c == 0: check values[i] notin histo continue let p = float(c) / float(cdf[^1]) let n = 5000.0 let expected = p * n let stdDev = sqrt(n * p * (1.0 - p)) # NOTE: like unnormalized int CDF test, P(wholeTestFails) =~ 0.01. check abs(float(histo[values[i]]) - expected) <= 3.0 * stdDev suite "^": test "compiles for valid types": check: compiles(5 ^ 2) check: compiles(5.5 ^ 2) check: compiles(5.5 ^ 2.int8) check: compiles(5.5 ^ 2.uint) check: compiles(5.5 ^ 2.uint8) check: not compiles(5.5 ^ 2.2)