discard """ joinable: false targets: "c js" """ import std/[random, math, os, stats, sets, tables] randomize(233) proc main() = var occur: array[1000, int] for i in 0..100_000: let x = rand(high(occur)) inc occur[x] doAssert max(occur) <= 140 and min(occur) >= 60 # gives some slack var a = [0, 1] shuffle(a) doAssert a in [[0,1], [1,0]] doAssert rand(0) == 0 doAssert sample("a") == 'a' when compileOption("rangeChecks"): doAssertRaises(RangeDefect): discard rand(-1) doAssertRaises(RangeDefect): discard rand(-1.0) # don't use causes integer overflow doAssert compiles(rand[int](low(int) .. high(int))) main() block: when not defined(js): doAssert almostEqual(rand(12.5), 4.012897747078944) doAssert almostEqual(rand(2233.3322), 879.702755321298) type DiceRoll = range[0..6] doAssert rand(DiceRoll).int == 4 var rs: RunningStat for j in 1..5: for i in 1 .. 100_000: rs.push(gauss()) doAssert abs(rs.mean-0) < 0.08, $rs.mean doAssert abs(rs.standardDeviation()-1.0) < 0.1 let bounds = [3.5, 5.0] for a in [rs.max, -rs.min]: doAssert a >= bounds[0] and a <= bounds[1] rs.clear() block: type DiceRoll = range[3..6] var flag = false for i in 0..<100: if rand(5.DiceRoll) < 3: flag = true doAssert flag # because of: rand(max: int): int block: # random int block: # there might be some randomness var set = initHashSet[int](128) for i in 1..1000: incl(set, rand(high(int))) doAssert len(set) == 1000 block: # single number bounds work var rand: int for i in 1..1000: rand = rand(1000) doAssert rand <= 1000 doAssert rand >= 0 block: # slice bounds work var rand: int for i in 1..1000: rand = rand(100..1000) doAssert rand <= 1000 doAssert rand >= 100 block: # again gives new numbers var rand1 = rand(1000000) when not defined(js): os.sleep(200) var rand2 = rand(1000000) doAssert rand1 != rand2 block: # random float block: # there might be some randomness var set = initHashSet[float](128) for i in 1..100: incl(set, rand(1.0)) doAssert len(set) == 100 block: # single number bounds work var rand: float for i in 1..1000: rand = rand(1000.0) doAssert rand <= 1000.0 doAssert rand >= 0.0 block: # slice bounds work var rand: float for i in 1..1000: rand = rand(100.0..1000.0) doAssert rand <= 1000.0 doAssert rand >= 100.0 block: # again gives new numbers var rand1: float = rand(1000000.0) when not defined(js): os.sleep(200) var rand2: float = rand(1000000.0) doAssert rand1 != rand2 block: # random sample block: # "non-uniform array sample unnormalized int CDF let values = [10, 20, 30, 40, 50] # values let counts = [4, 3, 2, 1, 0] # weights aka unnormalized probabilities var histo = initCountTable[int]() let cdf = counts.cumsummed # unnormalized CDF for i in 0 ..< 5000: histo.inc(sample(values, cdf)) doAssert histo.len == 4 # number of non-zero in `counts` # Any one bin is a binomial random var for n samples, each with prob p of # adding a count to k; E[k]=p*n, Var k=p*(1-p)*n, approximately Normal for # big n. So, P(abs(k - p*n)/sqrt(p*(1-p)*n))>3.0) =~ 0.0027, while # P(wholeTestFails) =~ 1 - P(binPasses)^4 =~ 1 - (1-0.0027)^4 =~ 0.01. for i, c in counts: if c == 0: doAssert values[i] notin histo continue let p = float(c) / float(cdf[^1]) let n = 5000.0 let expected = p * n let stdDev = sqrt(n * p * (1.0 - p)) doAssert abs(float(histo[values[i]]) - expected) <= 3.0 * stdDev block: # non-uniform array sample normalized float CDF let values = [10, 20, 30, 40, 50] # values let counts = [0.4, 0.3, 0.2, 0.1, 0] # probabilities var histo = initCountTable[int]() let cdf = counts.cumsummed # normalized CDF for i in 0 ..< 5000: histo.inc(sample(values, cdf)) doAssert histo.len == 4 # number of non-zero in ``counts`` for i, c in counts: if c == 0: doAssert values[i] notin histo continue let p = float(c) / float(cdf[^1]) let n = 5000.0 let expected = p * n let stdDev = sqrt(n * p * (1.0 - p)) # NOTE: like unnormalized int CDF test, P(wholeTestFails) =~ 0.01. doAssert abs(float(histo[values[i]]) - expected) <= 3.0 * stdDev