#
# blah
#
#
# blah blah
#
# the width of the absolute box is the same as "blah blah", but we
# only know that after the outermost box has been layouted.
#
# So we must delay this layout until before the outermost box is
# popped off the stack, and we do this by queuing up absolute boxes in
# the initial pass.
#
#TODO: welp, turns out this is also true without position: absolute,
# so I think we could skip this entirely... especially now that
# we can cache sub-layouts.
QueuedAbsolute = object
offset: Offset
child: BlockBox
PositionedItem = ref object
queue: seq[QueuedAbsolute]
LayoutContext = ref object
attrsp: ptr WindowAttributes
cellSize: Size # size(w = attrsp.ppc, h = attrsp.ppl)
positioned: seq[PositionedItem]
myRootProperties: CSSValues
# placeholder text data
imgText: StyledNode
audioText: StyledNode
videoText: StyledNode
luctx: LUContext
const DefaultSpan = Span(start: 0, send: LUnit.high)
func minWidth(sizes: ResolvedSizes): LUnit =
return sizes.bounds.a[dtHorizontal].start
func maxWidth(sizes: ResolvedSizes): LUnit =
return sizes.bounds.a[dtHorizontal].send
func minHeight(sizes: ResolvedSizes): LUnit =
return sizes.bounds.a[dtVertical].start
func maxHeight(sizes: ResolvedSizes): LUnit =
return sizes.bounds.a[dtVertical].send
func sum(span: Span): LUnit =
return span.start + span.send
func opposite(dim: DimensionType): DimensionType =
case dim
of dtHorizontal: return dtVertical
of dtVertical: return dtHorizontal
func availableSpace(w, h: SizeConstraint): AvailableSpace =
return [dtHorizontal: w, dtVertical: h]
func w(space: AvailableSpace): SizeConstraint {.inline.} =
return space[dtHorizontal]
func w(space: var AvailableSpace): var SizeConstraint {.inline.} =
return space[dtHorizontal]
func `w=`(space: var AvailableSpace; w: SizeConstraint) {.inline.} =
space[dtHorizontal] = w
func h(space: var AvailableSpace): var SizeConstraint {.inline.} =
return space[dtVertical]
func h(space: AvailableSpace): SizeConstraint {.inline.} =
return space[dtVertical]
func `h=`(space: var AvailableSpace; h: SizeConstraint) {.inline.} =
space[dtVertical] = h
template attrs(state: LayoutContext): WindowAttributes =
state.attrsp[]
func maxContent(): SizeConstraint =
return SizeConstraint(t: scMaxContent)
func stretch(u: LUnit): SizeConstraint =
return SizeConstraint(t: scStretch, u: u)
func fitContent(u: LUnit): SizeConstraint =
return SizeConstraint(t: scFitContent, u: u)
func fitContent(sc: SizeConstraint): SizeConstraint =
case sc.t
of scMinContent, scMaxContent:
return sc
of scStretch, scFitContent:
return SizeConstraint(t: scFitContent, u: sc.u)
func isDefinite(sc: SizeConstraint): bool =
return sc.t in {scStretch, scFitContent}
# 2nd pass: layout
func canpx(l: CSSLength; sc: SizeConstraint): bool =
return l.u != clAuto and (l.u != clPerc or sc.t == scStretch)
func px(l: CSSLength; p: LUnit): LUnit {.inline.} =
if l.u != clPerc:
return l.num.toLUnit()
return (p.toFloat64() * l.num / 100).toLUnit()
func px(l: CSSLength; p: SizeConstraint): LUnit {.inline.} =
if l.u != clPerc:
return l.num.toLUnit()
if p.t == scStretch:
return (p.u.toFloat64() * l.num / 100).toLUnit()
return 0
func stretchOrMaxContent(l: CSSLength; sc: SizeConstraint): SizeConstraint =
if l.canpx(sc):
return stretch(l.px(sc))
return maxContent()
func applySizeConstraint(u: LUnit; availableSize: SizeConstraint):
LUnit =
case availableSize.t
of scStretch:
return availableSize.u
of scMinContent, scMaxContent:
# must be calculated elsewhere...
return u
of scFitContent:
return min(u, availableSize.u)
func outerSize(box: BlockBox; dim: DimensionType; sizes: ResolvedSizes):
LUnit =
return sizes.margin[dim].sum() + box.state.size[dim]
func max(span: Span): LUnit =
return max(span.start, span.send)
# In CSS, "min" beats "max".
func minClamp(x: LUnit; span: Span): LUnit =
return max(min(x, span.send), span.start)
type
BlockContext = object
lctx: LayoutContext
marginTodo: Strut
# We use a linked list to set the correct BFC offset and relative offset
# for every block with an unresolved y offset on margin resolution.
# marginTarget is a pointer to the last unresolved ancestor.
# ancestorsHead is a pointer to the last element of the ancestor list
# (which may in fact be a pointer to the BPS of a previous sibling's
# child).
# parentBps is a pointer to the currently layouted parent block's BPS.
marginTarget: BlockPositionState
ancestorsHead: BlockPositionState
parentBps: BlockPositionState
exclusions: seq[Exclusion]
unpositionedFloats: seq[UnpositionedFloat]
maxFloatHeight: LUnit
clearOffset: LUnit
UnpositionedFloat = object
parentBps: BlockPositionState
space: AvailableSpace
box: BlockBox
marginOffset: Offset
outerSize: Size
BlockPositionState = ref object
next: BlockPositionState
box: BlockBox
offset: Offset # offset relative to the block formatting context
resolved: bool # has the position been resolved yet?
Exclusion = object
offset: Offset
size: Size
t: CSSFloat
Strut = object
pos: LUnit
neg: LUnit
type
LineBoxState = object
atomStates: seq[InlineAtomState]
baseline: LUnit
hasExclusion: bool
charwidth: int
# Set at the end of layoutText. It helps determine the beginning of the
# next inline box.
widthAfterWhitespace: LUnit
# minimum height to fit all inline atoms
minHeight: LUnit
paddingTodo: seq[tuple[box: InlineBox; i: int]]
atoms: seq[InlineAtom]
size: Size
availableWidth: LUnit # actual place available after float exclusions
offsety: LUnit # offset of line in root box
height: LUnit # height used for painting; does not include padding
intrh: LUnit # intrinsic minimum height
InlineAtomState = object
vertalign: CSSVerticalAlign
baseline: LUnit
marginTop: LUnit
marginBottom: LUnit
box: InlineBox
InlineUnpositionedFloat = object
parent: InlineBox
box: BlockBox
outerSize: Size
marginOffset: Offset
space: AvailableSpace
InlineContext = object
state: BoxLayoutState
computed: CSSValues
bctx: ptr BlockContext
bfcOffset: Offset
lbstate: LineBoxState
hasshy: bool
lctx: LayoutContext
space: AvailableSpace
whitespacenum: int
whitespaceIsLF: bool
whitespaceFragment: InlineBox
word: InlineAtom
wrappos: int # position of last wrapping opportunity, or -1
textFragmentSeen: bool
lastTextFragment: InlineBox
firstBaselineSet: bool
unpositionedFloats: seq[InlineUnpositionedFloat]
secondPass: bool
padding: RelativeRect
InlineState = object
box: InlineBox
startOffsetTop: Offset
# we do not want to collapse newlines over tag boundaries, so these are
# in state
lastrw: int # last rune width of the previous word
firstrw: int # first rune width of the current word
prevrw: int # last processed rune's width
func whitespacepre(computed: CSSValues): bool =
computed{"white-space"} in {WhitespacePre, WhitespacePreLine,
WhitespacePreWrap}
func nowrap(computed: CSSValues): bool =
computed{"white-space"} in {WhitespaceNowrap, WhitespacePre}
func cellWidth(lctx: LayoutContext): int =
lctx.attrs.ppc
func cellWidth(ictx: InlineContext): int =
ictx.lctx.cellWidth
func cellHeight(ictx: InlineContext): int =
ictx.lctx.attrs.ppl
func sum(rect: RelativeRect): Size =
return [
dtHorizontal: rect[dtHorizontal].sum(),
dtVertical: rect[dtVertical].sum()
]
func startOffset(rect: RelativeRect): Offset =
return offset(x = rect[dtHorizontal].start, y = rect[dtVertical].start)
# Whitespace between words
func computeShift(ictx: InlineContext; state: InlineState): LUnit =
if ictx.whitespacenum == 0:
return 0
if ictx.whitespaceIsLF and state.lastrw == 2 and state.firstrw == 2:
# skip line feed between double-width characters
return 0
if not state.box.computed.whitespacepre:
if ictx.lbstate.atoms.len == 0:
return 0
let atom = ictx.lbstate.atoms[^1]
if atom.t == iatWord and atom.str[^1] == ' ':
return 0
return ictx.cellWidth * ictx.whitespacenum
proc newWord(ictx: var InlineContext) =
ictx.word = InlineAtom(
t: iatWord,
size: size(w = 0, h = ictx.cellHeight)
)
ictx.wrappos = -1
ictx.hasshy = false
#TODO start & justify would be nice to have
const TextAlignNone = {
TextAlignStart, TextAlignLeft, TextAlignChaLeft, TextAlignJustify
}
# Resize the line's height based on atoms' height and baseline.
# The line height should be at least as high as the highest baseline used by
# an atom plus that atom's height.
func resizeLine(lbstate: LineBoxState; lctx: LayoutContext): LUnit =
let baseline = lbstate.baseline
var h = lbstate.size.h
for i, atom in lbstate.atoms:
let iastate = lbstate.atomStates[i]
# In all cases, the line's height must at least equal the atom's height.
# (Where the atom is actually placed is irrelevant here.)
h = max(h, atom.size.h)
case iastate.vertalign.keyword
of VerticalAlignBaseline:
# Line height must be at least as high as
# (atom baseline) + (atom height) + (extra height) - (line baseline).
h = max(atom.offset.y + atom.size.h - baseline, h)
of VerticalAlignMiddle:
# Line height must be at least
# (line baseline) + (atom height / 2).
h = max(baseline + atom.size.h div 2, h)
of VerticalAlignTop, VerticalAlignBottom:
# Line height must be at least atom height (already ensured above.)
discard
else:
# See baseline (with len = 0).
h = max(baseline - iastate.baseline + atom.size.h, h)
return h
# returns marginTop
proc positionAtoms(lbstate: LineBoxState; lctx: LayoutContext): LUnit =
let baseline = lbstate.baseline
var marginTop: LUnit = 0
for i, atom in lbstate.atoms:
let iastate = lbstate.atomStates[i]
case iastate.vertalign.keyword
of VerticalAlignBaseline:
# Atom is placed at (line baseline) - (atom baseline) - len
atom.offset.y = baseline - atom.offset.y
of VerticalAlignMiddle:
# Atom is placed at (line baseline) - ((atom height) / 2)
atom.offset.y = baseline - atom.size.h div 2
of VerticalAlignTop:
# Atom is placed at the top of the line.
atom.offset.y = 0
of VerticalAlignBottom:
# Atom is placed at the bottom of the line.
atom.offset.y = lbstate.size.h - atom.size.h
else:
# See baseline (with len = 0).
atom.offset.y = baseline - iastate.baseline
# Find the best top margin of all atoms.
# We are looking for the lowest top edge of the line, so we have to do this
# after we know where the atoms will be placed.
# Note: we used to calculate the bottom edge based on margins too, but this
# generated pointless empty lines so I removed it.
marginTop = max(iastate.marginTop - atom.offset.y, marginTop)
return marginTop
func getLineWidth(ictx: InlineContext): LUnit =
return case ictx.space.w.t
of scMinContent, scMaxContent: ictx.state.size.w
of scFitContent: ictx.space.w.u
of scStretch: max(ictx.state.size.w, ictx.space.w.u)
func getLineXShift(ictx: InlineContext; width: LUnit): LUnit =
return case ictx.computed{"text-align"}
of TextAlignNone: LUnit(0)
of TextAlignEnd, TextAlignRight, TextAlignChaRight:
let width = min(width, ictx.lbstate.availableWidth)
max(width, ictx.lbstate.size.w) - ictx.lbstate.size.w
of TextAlignCenter, TextAlignChaCenter:
let width = min(width, ictx.lbstate.availableWidth)
max((max(width, ictx.lbstate.size.w)) div 2 - ictx.lbstate.size.w div 2, 0)
proc shiftAtoms(ictx: var InlineContext; marginTop: LUnit) =
let offsety = ictx.lbstate.offsety
let shiftTop = marginTop
let cellHeight = ictx.cellHeight
let width = ictx.getLineWidth()
let xshift = ictx.getLineXShift(width)
var totalWidth: LUnit = 0
var currentAreaOffsetX: LUnit = 0
var currentFragment: InlineBox = nil
let offsetyShifted = shiftTop + offsety
var areaY: LUnit = 0
for i, atom in ictx.lbstate.atoms:
atom.offset.y = atom.offset.y + offsetyShifted
areaY = max(atom.offset.y, areaY)
#TODO why not offsetyShifted here?
let minHeight = atom.offset.y - offsety + atom.size.h
ictx.lbstate.minHeight = max(ictx.lbstate.minHeight, minHeight)
# now position on the inline axis
atom.offset.x += xshift
totalWidth += atom.size.w
let box = ictx.lbstate.atomStates[i].box
if currentFragment != box:
if currentFragment != nil:
# flush area
let lastAtom = ictx.lbstate.atoms[i - 1]
let w = lastAtom.offset.x + lastAtom.size.w - currentAreaOffsetX
if w != 0:
currentFragment.state.areas.add(Area(
offset: offset(x = currentAreaOffsetX, y = areaY),
# it seems cellHeight is what other browsers use here too
size: size(w = w, h = cellHeight)
))
currentFragment = box
# init new box
currentAreaOffsetX = if box.state.areas.len == 0:
box.state.atoms[0].offset.x
else:
ictx.lbstate.atoms[0].offset.x
if currentFragment != nil:
# flush area
let atom = ictx.lbstate.atoms[^1]
areaY = max(atom.offset.y, areaY)
# it seems cellHeight is what other browsers use here too?
let w = atom.offset.x + atom.size.w - currentAreaOffsetX
let offset = offset(x = currentAreaOffsetX, y = areaY)
template lastArea: untyped = currentFragment.state.areas[^1]
if currentFragment.state.areas.len > 0 and
lastArea.offset.x == offset.x and lastArea.size.w == w and
lastArea.offset.y + lastArea.size.h == offset.y:
# merge contiguous areas
lastArea.size.h += cellHeight
else:
currentFragment.state.areas.add(Area(
offset: offset,
size: size(w = w, h = cellHeight)
))
for (box, i) in ictx.lbstate.paddingTodo:
box.state.areas[i].offset.x += xshift
box.state.areas[i].offset.y = areaY
if ictx.space.w.t == scFitContent:
ictx.state.size.w = max(totalWidth, ictx.state.size.w)
# Align atoms (inline boxes, text, etc.) on both axes.
proc alignLine(ictx: var InlineContext) =
# Start with cell height as the baseline and line height.
let ch = ictx.cellHeight.toLUnit()
ictx.lbstate.size.h = ch
# Baseline is what we computed in addAtom, or cell height if that's greater.
ictx.lbstate.baseline = max(ictx.lbstate.baseline, ch)
# Resize according to the baseline and atom sizes.
ictx.lbstate.size.h = ictx.lbstate.resizeLine(ictx.lctx)
# Now we can calculate the actual position of atoms inside the line.
let marginTop = ictx.lbstate.positionAtoms(ictx.lctx)
# Finally, offset all atoms' y position by the largest top margin and the
# line box's top padding.
ictx.shiftAtoms(marginTop)
# Ensure that the line is exactly as high as its highest atom demands,
# rounded up to the next line.
ictx.lbstate.size.h = ictx.lbstate.minHeight.ceilTo(ictx.cellHeight)
# Now, if we got a height that is lower than cell height, then set it
# back to the cell height. (This is to avoid the situation where we
# would swallow hard line breaks with
.)
if ictx.lbstate.size.h < ch:
ictx.lbstate.size.h = ch
# Set the line height to size.h.
ictx.lbstate.height = ictx.lbstate.size.h
proc putAtom(state: var LineBoxState; atom: InlineAtom;
iastate: InlineAtomState; box: InlineBox) =
state.atomStates.add(iastate)
state.atomStates[^1].box = box
state.atoms.add(atom)
box.state.atoms.add(atom)
proc addSpacing(ictx: var InlineContext; width: LUnit; state: InlineState;
hang = false) =
let box = ictx.whitespaceFragment
if box.state.atoms.len == 0 or ictx.lbstate.atoms.len == 0 or
(let oatom = box.state.atoms[^1];
oatom.t != iatWord or oatom != ictx.lbstate.atoms[^1]):
let atom = InlineAtom(
t: iatWord,
size: size(w = 0, h = ictx.cellHeight),
offset: offset(x = ictx.lbstate.size.w, y = ictx.cellHeight)
)
let iastate = InlineAtomState(baseline: atom.size.h)
ictx.lbstate.putAtom(atom, iastate, box)
let atom = box.state.atoms[^1]
let n = (width div ictx.cellWidth).toInt #TODO
for i in 0 ..< n:
atom.str &= ' '
atom.size.w += width
if not hang:
# In some cases, whitespace may "hang" at the end of the line. This means
# it is written, but is not actually counted in the box's width.
ictx.lbstate.size.w += width
proc flushWhitespace(ictx: var InlineContext; state: InlineState;
hang = false) =
let shift = ictx.computeShift(state)
ictx.lbstate.charwidth += ictx.whitespacenum
ictx.whitespacenum = 0
if shift > 0:
ictx.addSpacing(shift, state, hang)
proc clearFloats(offsety: var LUnit; bctx: var BlockContext;
bfcOffsety: LUnit; clear: CSSClear) =
var y = bfcOffsety + offsety
case clear
of ClearLeft, ClearInlineStart:
for ex in bctx.exclusions:
if ex.t == FloatLeft:
y = max(ex.offset.y + ex.size.h, y)
of ClearRight, ClearInlineEnd:
for ex in bctx.exclusions:
if ex.t == FloatRight:
y = max(ex.offset.y + ex.size.h, y)
of ClearBoth:
for ex in bctx.exclusions:
y = max(ex.offset.y + ex.size.h, y)
of ClearNone: assert false
bctx.clearOffset = y
offsety = y - bfcOffsety
# Prepare the next line's initial width and available width.
# (If space on the left is excluded by floats, set the initial width to
# the end of that space. If space on the right is excluded, set the
# available width to that space.)
proc initLine(ictx: var InlineContext) =
# we want to start from padding-left, but normally exclude padding
# from space. so we must offset available width with padding-left too
ictx.lbstate.availableWidth = ictx.space.w.u + ictx.padding.left
ictx.lbstate.size.w = ictx.padding.left
#TODO what if maxContent/minContent?
if ictx.bctx.exclusions.len > 0:
let bfcOffset = ictx.bfcOffset
let y = ictx.lbstate.offsety + bfcOffset.y
var left = bfcOffset.x + ictx.lbstate.size.w
var right = bfcOffset.x + ictx.lbstate.availableWidth
for ex in ictx.bctx.exclusions:
if ex.offset.y <= y and y < ex.offset.y + ex.size.h:
ictx.lbstate.hasExclusion = true
if ex.t == FloatLeft:
left = ex.offset.x + ex.size.w
else:
right = ex.offset.x
ictx.lbstate.size.w = max(left - bfcOffset.x, ictx.lbstate.size.w)
ictx.lbstate.availableWidth = min(right - bfcOffset.x,
ictx.lbstate.availableWidth)
proc finishLine(ictx: var InlineContext; state: var InlineState; wrap: bool;
force = false; clear = ClearNone) =
if ictx.lbstate.atoms.len != 0 or force:
let whitespace = state.box.computed{"white-space"}
if whitespace == WhitespacePre:
ictx.flushWhitespace(state)
# see below on padding
ictx.state.intr.w = max(ictx.state.intr.w, ictx.lbstate.size.w -
ictx.padding.left)
elif whitespace == WhitespacePreWrap:
ictx.flushWhitespace(state, hang = true)
else:
ictx.whitespacenum = 0
# align atoms + calculate width for fit-content + place
ictx.alignLine()
# add line to ictx
let y = ictx.lbstate.offsety
if clear != ClearNone:
ictx.lbstate.size.h.clearFloats(ictx.bctx[], ictx.bfcOffset.y + y, clear)
# * set first baseline if this is the first line box
# * always set last baseline (so the baseline of the last line box remains)
ictx.state.baseline = y + ictx.lbstate.baseline
if not ictx.firstBaselineSet:
ictx.state.firstBaseline = ictx.lbstate.baseline
ictx.firstBaselineSet = true
ictx.state.size.h += ictx.lbstate.size.h
ictx.state.intr.h += ictx.lbstate.intrh
let lineWidth = if wrap:
ictx.lbstate.availableWidth
else:
ictx.lbstate.size.w
# padding-left is added to the line to aid float exclusion; undo
# this here to prevent double-padding later
ictx.state.size.w = max(ictx.state.size.w, lineWidth - ictx.padding.left)
ictx.lbstate = LineBoxState(
offsety: y + ictx.lbstate.size.h,
intrh: ictx.cellHeight
)
ictx.initLine()
func shouldWrap(ictx: InlineContext; w: LUnit;
pcomputed: CSSValues): bool =
if pcomputed != nil and pcomputed.nowrap:
return false
if ictx.space.w.t == scMaxContent:
return false # no wrap with max-content
if ictx.space.w.t == scMinContent:
return true # always wrap with min-content
return ictx.lbstate.size.w + w > ictx.lbstate.availableWidth
func shouldWrap2(ictx: InlineContext; w: LUnit): bool =
if not ictx.lbstate.hasExclusion:
return false
return ictx.lbstate.size.w + w > ictx.lbstate.availableWidth
func getBaseline(ictx: InlineContext; iastate: InlineAtomState;
atom: InlineAtom): LUnit =
return case iastate.vertalign.keyword
of VerticalAlignBaseline:
let length = CSSLength(u: iastate.vertalign.u, num: iastate.vertalign.num)
let len = length.px(ictx.cellHeight)
iastate.baseline + len
of VerticalAlignTop, VerticalAlignBottom:
atom.size.h
of VerticalAlignMiddle:
atom.size.h div 2
else:
iastate.baseline
# Add an inline atom atom, with state iastate.
# Returns true on newline.
proc addAtom(ictx: var InlineContext; state: var InlineState;
iastate: InlineAtomState; atom: InlineAtom): bool =
result = false
var shift = ictx.computeShift(state)
ictx.lbstate.charwidth += ictx.whitespacenum
ictx.whitespacenum = 0
# Line wrapping
if ictx.shouldWrap(atom.size.w + shift, state.box.computed):
ictx.finishLine(state, wrap = true)
result = true
# Recompute on newline
shift = ictx.computeShift(state)
# For floats: flush lines until we can place the atom.
#TODO this is inefficient
while ictx.shouldWrap2(atom.size.w + shift):
ictx.finishLine(state, wrap = false, force = true)
# Recompute on newline
shift = ictx.computeShift(state)
if atom.size.w > 0 and atom.size.h > 0 or atom.t == iatInlineBlock:
if shift > 0:
ictx.addSpacing(shift, state)
if atom.t == iatWord and ictx.lbstate.atoms.len > 0 and
state.box.state.atoms.len > 0:
let oatom = ictx.lbstate.atoms[^1]
if oatom.t == iatWord and oatom == state.box.state.atoms[^1]:
oatom.str &= atom.str
oatom.size.w += atom.size.w
ictx.lbstate.size.w += atom.size.w
return
ictx.lbstate.putAtom(atom, iastate, state.box)
atom.offset.x += ictx.lbstate.size.w
ictx.lbstate.size.w += atom.size.w
# store for later use in resizeLine/shiftAtoms
let baseline = ictx.getBaseline(iastate, atom)
atom.offset.y = baseline
ictx.lbstate.baseline = max(ictx.lbstate.baseline, baseline)
proc addWord(ictx: var InlineContext; state: var InlineState): bool =
result = false
let atom = ictx.word
if atom.str != "":
atom.str.mnormalize() #TODO this may break on EOL.
let iastate = InlineAtomState(
vertalign: state.box.computed{"vertical-align"},
baseline: atom.size.h
)
let wordBreak = state.box.computed{"word-break"}
if ictx.wrappos != -1:
# set intr.w to the first wrapping opportunity
ictx.state.intr.w = max(ictx.state.intr.w, ictx.wrappos)
elif state.prevrw >= 2 and wordBreak != WordBreakKeepAll or
wordBreak == WordBreakBreakAll:
# last char was double width; we can wrap anywhere.
# (I think this isn't quite right when double width + half width
# are mixed, but whatever...)
ictx.state.intr.w = max(ictx.state.intr.w, state.prevrw)
else:
ictx.state.intr.w = max(ictx.state.intr.w, atom.size.w)
result = ictx.addAtom(state, iastate, atom)
ictx.newWord()
proc addWordEOL(ictx: var InlineContext; state: var InlineState): bool =
result = false
if ictx.word.str != "":
if ictx.wrappos != -1:
let leftstr = ictx.word.str.substr(ictx.wrappos)
ictx.word.str.setLen(ictx.wrappos)
if ictx.hasshy:
const shy = "\u00AD" # soft hyphen
ictx.word.str &= shy
ictx.hasshy = false
result = ictx.addWord(state)
ictx.word.str = leftstr
ictx.word.size.w = leftstr.width() * ictx.cellWidth
else:
result = ictx.addWord(state)
proc checkWrap(ictx: var InlineContext; state: var InlineState; u: uint32;
uw: int) =
if state.box.computed.nowrap:
return
let shift = ictx.computeShift(state)
state.prevrw = uw
if ictx.word.str.len == 0:
state.firstrw = uw
if uw >= 2:
# remove wrap opportunity, so we wrap properly on the last CJK char (instead
# of any dash inside CJK sentences)
ictx.wrappos = -1
case state.box.computed{"word-break"}
of WordBreakNormal:
if uw == 2 or ictx.wrappos != -1: # break on cjk and wrap opportunities
let plusWidth = ictx.word.size.w + shift + uw * ictx.cellWidth
if ictx.shouldWrap(plusWidth, nil):
if not ictx.addWordEOL(state): # no line wrapping occured in addAtom
ictx.finishLine(state, wrap = true)
ictx.whitespacenum = 0
of WordBreakBreakAll:
let plusWidth = ictx.word.size.w + shift + uw * ictx.cellWidth
if ictx.shouldWrap(plusWidth, nil):
if not ictx.addWordEOL(state): # no line wrapping occured in addAtom
ictx.finishLine(state, wrap = true)
ictx.whitespacenum = 0
of WordBreakKeepAll:
let plusWidth = ictx.word.size.w + shift + uw * ictx.cellWidth
if ictx.shouldWrap(plusWidth, nil):
ictx.finishLine(state, wrap = true)
ictx.whitespacenum = 0
proc processWhitespace(ictx: var InlineContext; state: var InlineState;
c: char) =
discard ictx.addWord(state)
case state.box.computed{"white-space"}
of WhitespaceNormal, WhitespaceNowrap:
if ictx.whitespacenum < 1 and ictx.lbstate.atoms.len > 0:
ictx.whitespacenum = 1
ictx.whitespaceFragment = state.box
ictx.whitespaceIsLF = c == '\n'
if c != '\n':
ictx.whitespaceIsLF = false
of WhitespacePreLine:
if c == '\n':
ictx.finishLine(state, wrap = false, force = true)
elif ictx.whitespacenum < 1:
ictx.whitespaceIsLF = false
ictx.whitespacenum = 1
ictx.whitespaceFragment = state.box
of WhitespacePre, WhitespacePreWrap:
ictx.whitespaceIsLF = false
if c == '\n':
ictx.finishLine(state, wrap = false, force = true)
elif c == '\t':
let realWidth = ictx.lbstate.charwidth + ictx.whitespacenum
# We must flush first, because addWord would otherwise try to wrap the
# line. (I think.)
ictx.flushWhitespace(state)
let w = ((realWidth + 8) and not 7) - realWidth
ictx.word.str.addUTF8(tabPUAPoint(w))
ictx.word.size.w += w * ictx.cellWidth
ictx.lbstate.charwidth += w
# Ditto here - we don't want the tab stop to get merged into the next
# word's atom.
discard ictx.addWord(state)
else:
inc ictx.whitespacenum
ictx.whitespaceFragment = state.box
# set the "last word's last rune width" to the previous rune width
state.lastrw = state.prevrw
func initInlineContext(bctx: var BlockContext; space: AvailableSpace;
bfcOffset: Offset; padding: RelativeRect; computed: CSSValues):
InlineContext =
return InlineContext(
bctx: addr bctx,
lctx: bctx.lctx,
bfcOffset: bfcOffset,
space: space,
computed: computed,
padding: padding,
lbstate: LineBoxState(offsety: padding.top, intrh: bctx.lctx.attrs.ppl)
)
proc layoutTextLoop(ictx: var InlineContext; state: var InlineState;
str: string) =
let luctx = ictx.lctx.luctx
var i = 0
while i < str.len:
let c = str[i]
if c in Ascii:
if c in AsciiWhitespace:
ictx.processWhitespace(state, c)
else:
let w = uint32(c).width()
ictx.checkWrap(state, uint32(c), w)
ictx.word.str &= c
ictx.word.size.w += w * ictx.cellWidth
ictx.lbstate.charwidth += w
if c == '-': # ascii dash
ictx.wrappos = ictx.word.str.len
ictx.hasshy = false
inc i
else:
let pi = i
let u = str.nextUTF8(i)
if luctx.isEnclosingMark(u) or luctx.isNonspacingMark(u):
continue
let w = u.width()
ictx.checkWrap(state, u, w)
if u == 0xAD: # soft hyphen
ictx.wrappos = ictx.word.str.len
ictx.hasshy = true
elif u in TabPUARange: # filter out chars placed in our PUA range
ictx.word.str &= "\uFFFD"
ictx.word.size.w += 0xFFFD.width() * ictx.cellWidth
else:
for j in pi ..< i:
ictx.word.str &= str[j]
ictx.word.size.w += w * ictx.cellWidth
ictx.lbstate.charwidth += w
discard ictx.addWord(state)
let shift = ictx.computeShift(state)
ictx.lbstate.widthAfterWhitespace = ictx.lbstate.size.w + shift
proc layoutText(ictx: var InlineContext; state: var InlineState; s: string) =
ictx.flushWhitespace(state)
ictx.newWord()
let transform = state.box.computed{"text-transform"}
if transform == TextTransformNone:
ictx.layoutTextLoop(state, s)
else:
let s = case transform
of TextTransformCapitalize: s.capitalizeLU()
of TextTransformUppercase: s.toUpperLU()
of TextTransformLowercase: s.toLowerLU()
of TextTransformFullWidth: s.fullwidth()
of TextTransformFullSizeKana: s.fullsize()
of TextTransformChaHalfWidth: s.halfwidth()
else: ""
ictx.layoutTextLoop(state, s)
func spx(l: CSSLength; p: SizeConstraint; computed: CSSValues;
padding: LUnit): LUnit =
let u = l.px(p)
if computed{"box-sizing"} == BoxSizingBorderBox:
return max(u - padding, 0)
return max(u, 0)
proc resolveUnderflow(sizes: var ResolvedSizes; parentWidth: SizeConstraint;
computed: CSSValues) =
# width must be definite, so that conflicts can be resolved
if sizes.space.w.isDefinite() and parentWidth.t == scStretch:
let total = sizes.space.w.u + sizes.margin[dtHorizontal].sum() +
sizes.padding[dtHorizontal].sum()
let underflow = parentWidth.u - total
if underflow > 0:
if computed{"margin-left"}.u != clAuto and
computed{"margin-right"}.u != clAuto:
sizes.margin[dtHorizontal].send += underflow
elif computed{"margin-left"}.u != clAuto and
computed{"margin-right"}.u == clAuto:
sizes.margin[dtHorizontal].send = underflow
elif computed{"margin-left"}.u == clAuto and
computed{"margin-right"}.u != clAuto:
sizes.margin[dtHorizontal].start = underflow
else:
sizes.margin[dtHorizontal].start = underflow div 2
sizes.margin[dtHorizontal].send = underflow div 2
proc resolveMargins(lctx: LayoutContext; availableWidth: SizeConstraint;
computed: CSSValues): RelativeRect =
# Note: we use availableWidth for percentage resolution intentionally.
return [
dtHorizontal: Span(
start: computed{"margin-left"}.px(availableWidth),
send: computed{"margin-right"}.px(availableWidth),
),
dtVertical: Span(
start: computed{"margin-top"}.px(availableWidth),
send: computed{"margin-bottom"}.px(availableWidth),
)
]
proc resolvePadding(lctx: LayoutContext; availableWidth: SizeConstraint;
computed: CSSValues): RelativeRect =
# Note: we use availableWidth for percentage resolution intentionally.
return [
dtHorizontal: Span(
start: computed{"padding-left"}.px(availableWidth),
send: computed{"padding-right"}.px(availableWidth)
),
dtVertical: Span(
start: computed{"padding-top"}.px(availableWidth),
send: computed{"padding-bottom"}.px(availableWidth),
)
]
func resolvePositioned(lctx: LayoutContext; size: Size;
computed: CSSValues): RelativeRect =
# As per standard, vertical percentages refer to the *height*, not the width
# (unlike with margin/padding)
return [
dtHorizontal: Span(
start: computed{"left"}.px(size.w),
send: computed{"right"}.px(size.w)
),
dtVertical: Span(
start: computed{"top"}.px(size.h),
send: computed{"bottom"}.px(size.h),
)
]
const DefaultBounds = Bounds(
a: [DefaultSpan, DefaultSpan],
mi: [DefaultSpan, DefaultSpan]
)
func resolveBounds(lctx: LayoutContext; space: AvailableSpace; padding: Size;
computed: CSSValues; flexItem = false): Bounds =
var res = DefaultBounds
block:
let sc = space.w
let padding = padding[dtHorizontal]
if computed{"max-width"}.canpx(sc):
let px = computed{"max-width"}.spx(sc, computed, padding)
res.a[dtHorizontal].send = px
if computed{"max-width"}.u == clPx:
res.mi[dtHorizontal].send = px
if computed{"min-width"}.canpx(sc):
let px = computed{"min-width"}.spx(sc, computed, padding)
res.a[dtHorizontal].start = px
if computed{"min-width"}.u == clPx:
res.mi[dtHorizontal].start = px
if flexItem: # for flex items, min-width overrides the intrinsic size.
res.mi[dtHorizontal].send = px
block:
let sc = space.h
let padding = padding[dtVertical]
if computed{"max-height"}.canpx(sc):
let px = computed{"max-height"}.spx(sc, computed, padding)
res.a[dtVertical].send = px
res.mi[dtVertical].send = px
if computed{"min-height"}.canpx(sc):
let px = computed{"min-height"}.spx(sc, computed, padding)
res.a[dtVertical].start = px
if computed{"min-height"}.u == clPx:
res.mi[dtVertical].start = px
if flexItem:
res.mi[dtVertical].send = px
return res
const CvalSizeMap = [dtHorizontal: cptWidth, dtVertical: cptHeight]
proc resolveAbsoluteWidth(sizes: var ResolvedSizes; size: Size;
positioned: RelativeRect; computed: CSSValues; lctx: LayoutContext) =
let paddingSum = sizes.padding[dtHorizontal].sum()
if computed{"width"}.u == clAuto:
let u = max(size.w - positioned[dtHorizontal].sum(), 0)
let marginSum = sizes.margin[dtHorizontal].sum()
if computed{"left"}.u != clAuto and computed{"right"}.u != clAuto:
# Both left and right are known, so we can calculate the width.
# Well, but subtract padding and margin first.
sizes.space.w = stretch(u - paddingSum - marginSum)
else:
# Return shrink to fit and solve for left/right.
# Well, but subtract padding and margin first.
sizes.space.w = fitContent(u - paddingSum - marginSum)
else:
let sizepx = computed{"width"}.spx(stretch(size.w), computed, paddingSum)
sizes.space.w = stretch(sizepx)
proc resolveAbsoluteHeight(sizes: var ResolvedSizes; size: Size;
positioned: RelativeRect; computed: CSSValues; lctx: LayoutContext) =
if computed{"height"}.u == clAuto:
let u = max(size.w - positioned[dtVertical].sum(), 0)
if computed{"top"}.u != clAuto and computed{"bottom"}.u != clAuto:
# Both top and bottom are known, so we can calculate the height.
# Well, but subtract padding and margin first.
sizes.space.h = stretch(u - sizes.padding[dtVertical].sum() -
sizes.margin[dtVertical].sum())
else:
# The height is based on the content.
sizes.space.h = maxContent()
else:
let sizepx = computed{"height"}.spx(stretch(size.h), computed,
sizes.padding[dtVertical].sum())
sizes.space.h = stretch(sizepx)
# Calculate and resolve available width & height for absolutely positioned
# boxes.
proc resolveAbsoluteSizes(lctx: LayoutContext; size: Size;
positioned: var RelativeRect; computed: CSSValues): ResolvedSizes =
positioned = lctx.resolvePositioned(size, computed)
var sizes = ResolvedSizes(
margin: lctx.resolveMargins(stretch(size.w), computed),
padding: lctx.resolvePadding(stretch(size.w), computed),
bounds: DefaultBounds
)
sizes.resolveAbsoluteWidth(size, positioned, computed, lctx)
sizes.resolveAbsoluteHeight(size, positioned, computed, lctx)
return sizes
# Calculate and resolve available width & height for floating boxes.
proc resolveFloatSizes(lctx: LayoutContext; space: AvailableSpace;
computed: CSSValues): ResolvedSizes =
let padding = lctx.resolvePadding(space.w, computed)
let paddingSum = padding.sum()
var sizes = ResolvedSizes(
margin: lctx.resolveMargins(space.w, computed),
padding: padding,
space: space,
bounds: lctx.resolveBounds(space, paddingSum, computed)
)
sizes.space.h = maxContent()
for dim in DimensionType:
let length = computed.objs[CvalSizeMap[dim]].length
if length.canpx(space[dim]):
let u = length.spx(space[dim], computed, paddingSum[dim])
sizes.space[dim] = stretch(minClamp(u, sizes.bounds.a[dim]))
elif sizes.space[dim].isDefinite():
let u = sizes.space[dim].u - sizes.margin[dim].sum() - paddingSum[dim]
sizes.space[dim] = fitContent(minClamp(u, sizes.bounds.a[dim]))
return sizes
proc resolveFlexItemSizes(lctx: LayoutContext; space: AvailableSpace;
dim: DimensionType; computed: CSSValues): ResolvedSizes =
let padding = lctx.resolvePadding(space.w, computed)
let paddingSum = padding.sum()
var sizes = ResolvedSizes(
margin: lctx.resolveMargins(space.w, computed),
padding: padding,
space: space,
bounds: lctx.resolveBounds(space, paddingSum, computed, flexItem = true)
)
if dim != dtHorizontal:
sizes.space.h = maxContent()
let length = computed.objs[CvalSizeMap[dim]].length
if length.canpx(space[dim]):
let u = length.spx(space[dim], computed, paddingSum[dim])
.minClamp(sizes.bounds.a[dim])
sizes.space[dim] = stretch(u)
if computed{"flex-shrink"} == 0:
sizes.bounds.mi[dim].start = max(u, sizes.bounds.mi[dim].start)
if computed{"flex-grow"} == 0:
sizes.bounds.mi[dim].send = min(u, sizes.bounds.mi[dim].send)
elif sizes.bounds.a[dim].send < LUnit.high:
sizes.space[dim] = fitContent(sizes.bounds.a[dim].max())
else:
# Ensure that space is indefinite in the first pass if no width has
# been specified.
sizes.space[dim] = maxContent()
let odim = dim.opposite()
let olength = computed.objs[CvalSizeMap[odim]].length
if olength.canpx(space[odim]):
let u = olength.spx(space[odim], computed, paddingSum[odim])
.minClamp(sizes.bounds.a[odim])
sizes.space[odim] = stretch(u)
if olength.u == clPx:
sizes.bounds.mi[odim].start = max(u, sizes.bounds.mi[odim].start)
sizes.bounds.mi[odim].send = min(u, sizes.bounds.mi[odim].send)
elif sizes.space[odim].isDefinite():
let u = sizes.space[odim].u - sizes.margin[odim].sum() - paddingSum[odim]
sizes.space[odim] = SizeConstraint(
t: sizes.space[odim].t,
u: minClamp(u, sizes.bounds.a[odim])
)
elif sizes.bounds.a[odim].send < LUnit.high:
sizes.space[odim] = fitContent(sizes.bounds.a[odim].max())
return sizes
proc resolveBlockWidth(sizes: var ResolvedSizes; parentWidth: SizeConstraint;
inlinePadding: LUnit; computed: CSSValues;
lctx: LayoutContext) =
let dim = dtHorizontal
let width = computed{"width"}
if width.canpx(parentWidth):
sizes.space.w = stretch(width.spx(parentWidth, computed, inlinePadding))
sizes.resolveUnderflow(parentWidth, computed)
if width.u == clPx:
let px = sizes.space.w.u
sizes.bounds.mi[dim].start = max(sizes.bounds.mi[dim].start, px)
sizes.bounds.mi[dim].send = min(sizes.bounds.mi[dim].send, px)
elif parentWidth.t == scStretch:
let underflow = parentWidth.u - sizes.margin[dim].sum() -
sizes.padding[dim].sum()
if underflow >= 0:
sizes.space.w = stretch(underflow)
else:
sizes.margin[dtHorizontal].send += underflow
elif parentWidth.t == scFitContent:
sizes.space.w = maxContent()
if sizes.space.w.isDefinite() and sizes.maxWidth < sizes.space.w.u or
sizes.maxWidth < LUnit.high and sizes.space.w.t == scMaxContent:
if sizes.space.w.t == scStretch:
# available width would stretch over max-width
sizes.space.w = stretch(sizes.maxWidth)
else: # scFitContent
# available width could be higher than max-width (but not necessarily)
sizes.space.w = fitContent(sizes.maxWidth)
sizes.resolveUnderflow(parentWidth, computed)
sizes.bounds.mi[dim].send = sizes.space.w.u
if sizes.space.w.isDefinite() and sizes.minWidth > sizes.space.w.u or
sizes.minWidth > 0 and sizes.space.w.t == scMinContent:
# two cases:
# * available width is stretched under min-width. in this case,
# stretch to min-width instead.
# * available width is fit under min-width. in this case, stretch to
# min-width as well (as we must satisfy min-width >= width).
sizes.space.w = stretch(sizes.minWidth)
sizes.resolveUnderflow(parentWidth, computed)
proc resolveBlockHeight(sizes: var ResolvedSizes; parentHeight: SizeConstraint;
blockPadding: LUnit; computed: CSSValues;
lctx: LayoutContext) =
let dim = dtVertical
let height = computed{"height"}
if height.canpx(parentHeight):
let px = height.spx(parentHeight, computed, blockPadding)
sizes.space.h = stretch(px)
if height.u == clPx:
sizes.bounds.mi[dim].start = max(sizes.bounds.mi[dim].start, px)
sizes.bounds.mi[dim].send = min(sizes.bounds.mi[dim].send, px)
if sizes.space.h.isDefinite() and sizes.maxHeight < sizes.space.h.u or
sizes.maxHeight < LUnit.high and sizes.space.h.t == scMaxContent:
# same reasoning as for width.
if sizes.space.h.t == scStretch:
sizes.space.h = stretch(sizes.maxHeight)
else: # scFitContent
sizes.space.h = fitContent(sizes.maxHeight)
if sizes.space.h.isDefinite() and sizes.minHeight > sizes.space.h.u or
sizes.minHeight > 0 and sizes.space.h.t == scMinContent:
# same reasoning as for width.
sizes.space.h = stretch(sizes.minHeight)
proc resolveBlockSizes(lctx: LayoutContext; space: AvailableSpace;
computed: CSSValues): ResolvedSizes =
let padding = lctx.resolvePadding(space.w, computed)
let paddingSum = padding.sum()
var sizes = ResolvedSizes(
margin: lctx.resolveMargins(space.w, computed),
padding: padding,
space: space,
bounds: lctx.resolveBounds(space, paddingSum, computed)
)
# height is max-content normally, but fit-content for clip.
sizes.space.h = if computed{"overflow-y"} != OverflowClip:
maxContent()
else:
fitContent(sizes.space.h)
# Finally, calculate available width and height.
sizes.resolveBlockWidth(space.w, paddingSum[dtHorizontal], computed, lctx)
#TODO parent height should be lctx height in quirks mode for percentage
# resolution.
sizes.resolveBlockHeight(space.h, paddingSum[dtVertical], computed, lctx)
return sizes
proc append(a: var Strut; b: LUnit) =
if b < 0:
a.neg = min(b, a.neg)
else:
a.pos = max(b, a.pos)
func sum(a: Strut): LUnit =
return a.pos + a.neg
# Forward declarations
proc layoutBlock(bctx: var BlockContext; box: BlockBox; sizes: ResolvedSizes)
proc layoutTableWrapper(bctx: BlockContext; box: BlockBox; sizes: ResolvedSizes)
proc layoutFlex(bctx: var BlockContext; box: BlockBox; sizes: ResolvedSizes)
proc layoutInline(ictx: var InlineContext; box: InlineBox)
proc layoutRootBlock(lctx: LayoutContext; box: BlockBox; offset: Offset;
sizes: ResolvedSizes; includeMargin = false)
# Note: padding must still be applied after this.
proc applySize(box: BlockBox; sizes: ResolvedSizes;
maxChildSize: LUnit; space: AvailableSpace; dim: DimensionType) =
# Make the box as small/large as the content's width or specified width.
box.state.size[dim] = maxChildSize.applySizeConstraint(space[dim])
# Then, clamp it to minWidth and maxWidth (if applicable).
box.state.size[dim] = box.state.size[dim].minClamp(sizes.bounds.a[dim])
proc applySize(box: BlockBox; sizes: ResolvedSizes; maxChildSize: Size;
space: AvailableSpace) =
for dim in DimensionType:
box.applySize(sizes, maxChildSize[dim], space, dim)
proc applyIntr(box: BlockBox; sizes: ResolvedSizes; intr: Size) =
for dim in DimensionType:
const pt = [dtHorizontal: cptOverflowX, dtVertical: cptOverflowY]
if box.computed.bits[pt[dim]].overflow notin OverflowScrollLike:
box.state.intr[dim] = intr[dim].minClamp(sizes.bounds.mi[dim])
else:
# We do not have a scroll bar, so do the next best thing: expand the
# box to the size its contents want. (Or the specified size, if
# it's greater.)
#TODO intrinsic minimum size isn't really guaranteed to equal the
# desired scroll size. Also, it's possible that a parent box clamps
# the height of this box; in that case, the parent box's
# width/height should be clamped to the inner scroll width/height
# instead.
box.state.intr[dim] = max(intr[dim], sizes.bounds.mi[dim].start)
box.state.size[dim] = max(box.state.size[dim], intr[dim])
proc applyBaseline(box: BlockBox) =
if box.children.len > 0:
let firstNested = box.children[0]
let lastNested = box.children[^1]
box.state.firstBaseline = firstNested.state.offset.y +
firstNested.state.baseline
box.state.baseline = lastNested.state.offset.y + lastNested.state.baseline
func bfcOffset(bctx: BlockContext): Offset =
if bctx.parentBps != nil:
return bctx.parentBps.offset
return offset(x = 0, y = 0)
const DisplayBlockLike = {DisplayBlock, DisplayListItem, DisplayInlineBlock}
# Return true if no more margin collapsing can occur for the current strut.
func canFlushMargins(box: BlockBox; sizes: ResolvedSizes): bool =
if box.computed{"position"} in {PositionAbsolute, PositionFixed}:
return false
return sizes.padding.top != 0 or sizes.padding.bottom != 0 or
box.inline != nil or box.computed{"display"} notin DisplayBlockLike or
box.computed{"clear"} != ClearNone
proc flushMargins(bctx: var BlockContext; box: BlockBox) =
# Apply uncommitted margins.
let margin = bctx.marginTodo.sum()
if bctx.marginTarget == nil:
box.state.offset.y += margin
else:
if bctx.marginTarget.box != nil:
bctx.marginTarget.box.state.offset.y += margin
var p = bctx.marginTarget
while true:
p.offset.y += margin
p.resolved = true
p = p.next
if p == nil: break
bctx.marginTarget = nil
bctx.marginTodo = Strut()
proc pushPositioned(lctx: LayoutContext) =
lctx.positioned.add(PositionedItem())
# size is the parent's size
proc popPositioned(lctx: LayoutContext; size: Size) =
let item = lctx.positioned.pop()
for it in item.queue:
let child = it.child
lctx.pushPositioned()
var positioned: RelativeRect
var size = size
#TODO this is very ugly.
# I'm subtracting the X offset because it's normally equivalent to
# the float-induced offset. But this isn't always true, e.g. it
# definitely isn't in flex layout.
size.w -= it.offset.x
var sizes = lctx.resolveAbsoluteSizes(size, positioned, child.computed)
var offset = it.offset
offset.x += sizes.margin.left
lctx.layoutRootBlock(child, offset, sizes)
if sizes.space.w.t == scFitContent and child.state.intr.w > size.w:
# In case the width is shrink-to-fit, and the available width is
# less than the minimum width, then the minimum width overrides
# the available width, and we must re-layout.
sizes.space.w = stretch(child.state.intr.w)
lctx.layoutRootBlock(child, offset, sizes)
#TODO what happens with marginBottom?
if child.computed{"left"}.u != clAuto:
child.state.offset.x = positioned.left + sizes.margin.left
elif child.computed{"right"}.u != clAuto:
child.state.offset.x = size.w - positioned.right - child.state.size.w -
sizes.margin.right
# margin.left is added in layoutRootBlock
if child.computed{"top"}.u != clAuto:
child.state.offset.y = positioned.top + sizes.margin.top
elif child.computed{"bottom"}.u != clAuto:
child.state.offset.y = size.h - positioned.bottom - child.state.size.h -
sizes.margin.bottom
else:
child.state.offset.y += sizes.margin.top
lctx.popPositioned(child.state.size)
proc queueAbsolute(lctx: LayoutContext; box: BlockBox; offset: Offset) =
case box.computed{"position"}
of PositionAbsolute:
lctx.positioned[^1].queue.add(QueuedAbsolute(child: box, offset: offset))
of PositionFixed:
lctx.positioned[0].queue.add(QueuedAbsolute(child: box, offset: offset))
else: assert false
type
BlockState = object
offset: Offset
maxChildWidth: LUnit
totalFloatWidth: LUnit # used for re-layouts
space: AvailableSpace
intr: Size
prevParentBps: BlockPositionState
needsReLayout: bool
# State kept for when a re-layout is necessary:
oldMarginTodo: Strut
oldExclusionsLen: int
initialMarginTarget: BlockPositionState
initialTargetOffset: Offset
initialParentOffset: Offset
relativeChildren: seq[BlockBox]
func findNextFloatOffset(bctx: BlockContext; offset: Offset; size: Size;
space: AvailableSpace; float: CSSFloat; outw: var LUnit): Offset =
# Algorithm originally from QEmacs.
var y = offset.y
let leftStart = offset.x
let rightStart = offset.x + max(size.w, space.w.u)
while true:
var left = leftStart
var right = rightStart
var miny = high(LUnit)
let cy2 = y + size.h
for ex in bctx.exclusions:
let ey2 = ex.offset.y + ex.size.h
if cy2 >= ex.offset.y and y < ey2:
let ex2 = ex.offset.x + ex.size.w
if ex.t == FloatLeft and left < ex2:
left = ex2
if ex.t == FloatRight and right > ex.offset.x:
right = ex.offset.x
miny = min(ey2, miny)
let w = right - left
if w >= size.w or miny == high(LUnit):
# Enough space, or no other exclusions found at this y offset.
outw = min(w, space.w.u) # do not overflow the container.
if float == FloatLeft:
return offset(x = left, y = y)
else: # FloatRight
return offset(x = right - size.w, y = y)
# Move y to the bottom exclusion edge at the lowest y (where the exclusion
# still intersects with the previous y).
y = miny
assert false
func findNextFloatOffset(bctx: BlockContext; offset: Offset; size: Size;
space: AvailableSpace; float: CSSFloat): Offset =
var dummy: LUnit
return bctx.findNextFloatOffset(offset, size, space, float, dummy)
func findNextBlockOffset(bctx: BlockContext; offset: Offset; size: Size;
space: AvailableSpace; outw: var LUnit): Offset =
return bctx.findNextFloatOffset(offset, size, space, FloatLeft, outw)
proc positionFloat(bctx: var BlockContext; child: BlockBox;
space: AvailableSpace; outerSize: Size; marginOffset, bfcOffset: Offset) =
assert space.w.t != scFitContent
let clear = child.computed{"clear"}
if clear != ClearNone:
child.state.offset.y.clearFloats(bctx, bctx.bfcOffset.y, clear)
var childBfcOffset = bfcOffset + child.state.offset - marginOffset
childBfcOffset.y = max(bctx.clearOffset, childBfcOffset.y)
let ft = child.computed{"float"}
assert ft != FloatNone
let offset = bctx.findNextFloatOffset(childBfcOffset, outerSize, space, ft)
child.state.offset = offset - bfcOffset + marginOffset
bctx.exclusions.add(Exclusion(offset: offset, size: outerSize, t: ft))
bctx.maxFloatHeight = max(bctx.maxFloatHeight, offset.y + outerSize.h)
proc positionFloats(bctx: var BlockContext) =
for f in bctx.unpositionedFloats:
bctx.positionFloat(f.box, f.space, f.outerSize, f.marginOffset,
f.parentBps.offset)
bctx.unpositionedFloats.setLen(0)
proc layoutInline(bctx: var BlockContext; box: BlockBox; sizes: ResolvedSizes) =
if box.computed{"position"} != PositionStatic:
bctx.lctx.pushPositioned()
let bfcOffset = if bctx.parentBps != nil:
bctx.parentBps.offset + box.state.offset
else: # this block establishes a new BFC.
offset(0, 0)
var ictx = bctx.initInlineContext(sizes.space, bfcOffset, sizes.padding,
box.computed)
ictx.initLine()
ictx.layoutInline(box.inline)
if ictx.lastTextFragment != nil:
var state = InlineState(box: ictx.lastTextFragment)
ictx.finishLine(state, wrap = false)
if ictx.unpositionedFloats.len > 0 or
ictx.space.w.t == scFitContent and
ictx.computed{"text-align"} notin TextAlignNone and
ictx.state.size.w != ictx.space.w.u:
# fit-content initial guess didn't work out; re-layout, with width stretched
# to the actual text width.
#
# Since we guess fit-content width to be the same width but stretched, this
# should only run for cases where the text is shorter than the place it has,
# or when some word overflows the place available.
#
# In the first case, we know that the text is relatively short, so it
# affects performance little. As for the latter case... just pray it happens
# rarely enough.
let floats = move(ictx.unpositionedFloats)
var space = sizes.space
#TODO there is still a bug here: if the parent's size is
# fit-content, then floats should trigger a re-layout in the
# *parent*.
if space.w.t != scStretch:
space.w = stretch(ictx.state.size.w)
ictx = bctx.initInlineContext(space, bfcOffset, sizes.padding, box.computed)
for it in floats:
bctx.positionFloat(it.box, space, it.outerSize, it.marginOffset,
bfcOffset)
ictx.initLine()
ictx.secondPass = true
ictx.layoutInline(box.inline)
if ictx.lastTextFragment != nil:
var state = InlineState(box: ictx.lastTextFragment)
ictx.finishLine(state, wrap = false)
for it in floats:
it.parent.state.atoms.add(InlineAtom(
t: iatInlineBlock,
innerbox: it.box
))
box.applySize(sizes, ictx.state.size, sizes.space)
let paddingSum = sizes.padding.sum()
box.applyIntr(sizes, ictx.state.intr + paddingSum)
box.state.size += paddingSum
box.state.baseline = ictx.state.baseline
box.state.firstBaseline = ictx.state.firstBaseline
if box.computed{"position"} != PositionStatic:
bctx.lctx.popPositioned(box.state.size)
# canClear signals if the box should clear in its inner (flow) layout.
# In general, this is only true for block boxes that do not establish
# a BFC; other boxes (e.g. flex) either have nothing to clear, or clear
# in their parent BFC (e.g. flow-root).
proc layoutFlow(bctx: var BlockContext; box: BlockBox; sizes: ResolvedSizes;
canClear: bool) =
if box.canFlushMargins(sizes):
bctx.flushMargins(box)
bctx.positionFloats()
if canClear and box.computed{"clear"} != ClearNone:
box.state.offset.y.clearFloats(bctx, bctx.bfcOffset.y,
box.computed{"clear"})
if box.inline != nil:
# Builder only contains inline boxes.
bctx.layoutInline(box, sizes)
else:
# Builder only contains block boxes.
bctx.layoutBlock(box, sizes)
proc layoutListItem(bctx: var BlockContext; box: BlockBox;
sizes: ResolvedSizes) =
case box.computed{"list-style-position"}
of ListStylePositionOutside:
let marker = box.children[0]
let content = box.children[1]
marker.state = BoxLayoutState()
content.state = BoxLayoutState(offset: box.state.offset)
#TODO should markers establish a new BFC?
# Actually, I'm not sure if it even matters, since they are out
# of flow. Either way, they certainly shouldn't clear.
bctx.layoutFlow(content, sizes, canClear = false)
#TODO we should put markers right before the first atom of the parent
# list item or something...
var bctx = BlockContext(lctx: bctx.lctx)
let markerSizes = ResolvedSizes(
space: availableSpace(w = fitContent(sizes.space.w), h = sizes.space.h),
bounds: DefaultBounds
)
bctx.layoutFlow(marker, markerSizes, canClear = true)
marker.state.offset.x = -marker.state.size.w
# take inner box min width etc.
box.state = content.state
content.state.offset = offset(x = 0, y = 0)
of ListStylePositionInside:
bctx.layoutFlow(box, sizes, canClear = true)
proc addInlineFloat(ictx: var InlineContext; state: var InlineState;
box: BlockBox) =
let lctx = ictx.lctx
let sizes = lctx.resolveFloatSizes(ictx.space, box.computed)
box.state = BoxLayoutState()
let offset = offset(
x = sizes.margin.left,
y = ictx.lbstate.offsety + sizes.margin.top
)
lctx.layoutRootBlock(box, offset, sizes)
ictx.lbstate.size.w += box.state.size.w
# Note that by now, the top y offset is always resolved.
ictx.unpositionedFloats.add(InlineUnpositionedFloat(
parent: state.box,
box: box,
space: sizes.space,
outerSize: size(
w = box.outerSize(dtHorizontal, sizes),
h = box.outerSize(dtVertical, sizes) + box.state.marginBottom,
),
marginOffset: sizes.margin.startOffset()
))
const DisplayOuterInline = {
DisplayInlineBlock, DisplayInlineTableWrapper, DisplayInlineFlex
}
proc addInlineAbsolute(ictx: var InlineContext; state: var InlineState;
box: BlockBox) =
let lctx = ictx.lctx
state.box.state.atoms.add(InlineAtom(
t: iatInlineBlock,
innerbox: box
))
var offset = offset(x = 0, y = ictx.lbstate.offsety)
if box.computed{"display"} in DisplayOuterInline:
# inline-block or similar. put it on the current line.
# (I don't add pending spacing because other browsers don't add
# it either.)
offset.x += ictx.lbstate.size.w
elif ictx.lbstate.atoms.len > 0:
# flush if there is already something on the line *and* our outer
# display is block.
offset.y += ictx.cellHeight
lctx.queueAbsolute(box, offset)
proc addInlineBlock(ictx: var InlineContext; state: var InlineState;
box: BlockBox) =
let lctx = ictx.lctx
var sizes = lctx.resolveFloatSizes(ictx.space, box.computed)
for i, it in sizes.padding.mpairs:
let cs = lctx.cellSize[i]
it.start = (it.start div cs).toInt.toLUnit * cs
it.send = (it.send div cs).toInt.toLUnit * cs
lctx.layoutRootBlock(box, offset(x = sizes.margin.left, y = 0), sizes)
# Apply the block box's properties to the atom itself.
let atom = InlineAtom(
t: iatInlineBlock,
innerbox: box,
offset: offset(x = 0, y = 0),
size: size(w = box.outerSize(dtHorizontal, sizes), h = box.state.size.h)
)
let iastate = InlineAtomState(
baseline: box.state.baseline,
vertalign: box.computed{"vertical-align"},
marginTop: sizes.margin.top,
marginBottom: box.state.marginBottom
)
discard ictx.addAtom(state, iastate, atom)
ictx.state.intr.w = max(ictx.state.intr.w, atom.innerbox.state.intr.w)
ictx.lbstate.intrh = max(ictx.lbstate.intrh, atom.size.h)
ictx.lbstate.charwidth = 0
ictx.whitespacenum = 0
proc addBox(ictx: var InlineContext; state: var InlineState; box: BlockBox) =
if box.computed{"position"} in {PositionAbsolute, PositionFixed}:
# This doesn't really have to be an inline block. I just want to
# handle its positioning here.
ictx.addInlineAbsolute(state, box)
elif box.computed{"float"} != FloatNone:
# (Must check after `position: absolute', as that has higher precedence.)
# This will trigger a re-layout for this inline root.
if not ictx.secondPass:
ictx.addInlineFloat(state, box)
else:
# This is an inline block.
assert box.computed{"display"} in DisplayOuterInline
ictx.addInlineBlock(state, box)
proc addImage(ictx: var InlineContext; state: var InlineState;
bmp: NetworkBitmap; padding: LUnit) =
let atom = InlineAtom(
t: iatImage,
bmp: bmp,
size: size(w = bmp.width, h = bmp.height)
)
#TODO this is hopelessly broken.
# The core problem is that we generate an inner and an outer box for
# images, and achieving an acceptable image sizing algorithm with this
# setup is practicaully impossible.
# Accordingly, a correct solution would either handle block-level
# images separately, or at least resolve the outer box's sizes with
# the knowledge that it is an image.
let computed = state.box.computed
let hasWidth = computed{"width"}.canpx(ictx.space.w)
let hasHeight = computed{"height"}.canpx(ictx.space.h)
let osize = atom.size
if hasWidth:
atom.size.w = computed{"width"}.spx(ictx.space.w, computed, padding)
if hasHeight:
atom.size.h = computed{"height"}.spx(ictx.space.h, computed, padding)
if computed{"max-width"}.canpx(ictx.space.w):
let w = computed{"max-width"}.spx(ictx.space.w, computed, padding)
atom.size.w = min(atom.size.w, w)
let hasMinWidth = computed{"min-width"}.canpx(ictx.space.w)
if hasMinWidth:
let w = computed{"min-width"}.spx(ictx.space.w, computed, padding)
atom.size.w = max(atom.size.w, w)
if computed{"max-height"}.canpx(ictx.space.h):
let h = computed{"max-height"}.spx(ictx.space.h, computed, padding)
atom.size.h = min(atom.size.h, h)
let hasMinHeight = computed{"min-height"}.canpx(ictx.space.h)
if hasMinHeight:
let h = computed{"min-height"}.spx(ictx.space.h, computed, padding)
atom.size.h = max(atom.size.h, h)
if not hasWidth and ictx.space.w.isDefinite():
atom.size.w = min(ictx.space.w.u, atom.size.w)
if not hasHeight and ictx.space.h.isDefinite():
atom.size.h = min(ictx.space.h.u, atom.size.h)
if not hasHeight and not hasWidth:
if osize.w >= osize.h or
not ictx.space.h.isDefinite() and ictx.space.w.isDefinite():
if osize.w > 0:
atom.size.h = osize.h div osize.w * atom.size.w
else:
if osize.h > 0:
atom.size.w = osize.w div osize.h * atom.size.h
elif not hasHeight:
atom.size.h = osize.h div osize.w * atom.size.w
elif not hasWidth:
atom.size.w = osize.w div osize.h * atom.size.h
let iastate = InlineAtomState(
vertalign: state.box.computed{"vertical-align"},
baseline: atom.size.h
)
discard ictx.addAtom(state, iastate, atom)
ictx.lbstate.charwidth = 0
if atom.size.h > 0:
# Setting the atom size as intr.w might result in a circular dependency
# between table cell sizing and image sizing when we don't have a definite
# parent size yet. e.g.
![]()
with an indefinite containing
# size (i.e. the first table cell pass) would resolve to an intr.w of
# image.width, stretching out the table to an uncomfortably large size.
# The issue is similar with intr.h, which is relevant in flex layout.
#
# So check if any dimension is fixed, and if yes, report the intrinsic
# minimum dimension as that or the atom size (whichever is greater).
if computed{"width"}.u != clPerc or computed{"min-width"}.u != clPerc:
ictx.state.intr.w = max(ictx.state.intr.w, atom.size.w)
if computed{"height"}.u != clPerc or computed{"min-height"}.u != clPerc:
ictx.lbstate.intrh = max(ictx.lbstate.intrh, atom.size.h)
proc layoutInline(ictx: var InlineContext; box: InlineBox) =
let lctx = ictx.lctx
let computed = box.computed
var padding = Span()
if stSplitStart in box.splitType:
let w = computed{"margin-left"}.px(ictx.space.w)
ictx.lbstate.size.w += w
ictx.lbstate.widthAfterWhitespace += w
padding = Span(
start: computed{"padding-left"}.px(ictx.space.w),
send: computed{"padding-right"}.px(ictx.space.w)
)
box.state = InlineBoxState()
if padding.start != 0:
box.state.areas.add(Area(
offset: offset(x = ictx.lbstate.widthAfterWhitespace, y = 0),
size: size(w = padding.start, h = ictx.cellHeight)
))
ictx.lbstate.paddingTodo.add((box, 0))
box.state.startOffset = offset(
x = ictx.lbstate.widthAfterWhitespace,
y = ictx.lbstate.offsety
)
ictx.lbstate.size.w += padding.start
var state = InlineState(box: box)
if stSplitStart in box.splitType and computed{"position"} != PositionStatic:
lctx.pushPositioned()
case box.t
of ibtNewline:
ictx.finishLine(state, wrap = false, force = true,
box.computed{"clear"})
of ibtBox: ictx.addBox(state, box.box)
of ibtBitmap: ictx.addImage(state, box.bmp, padding.sum())
of ibtText: ictx.layoutText(state, box.text.textData)
of ibtParent:
for child in box.children:
ictx.layoutInline(child)
if padding.send != 0:
box.state.areas.add(Area(
offset: offset(x = ictx.lbstate.size.w, y = 0),
size: size(w = padding.send, h = ictx.cellHeight)
))
ictx.lbstate.paddingTodo.add((box, box.state.areas.high))
if stSplitEnd in box.splitType:
ictx.lbstate.size.w += padding.send
ictx.lbstate.size.w += computed{"margin-right"}.px(ictx.space.w)
if box.t != ibtParent:
if not ictx.textFragmentSeen:
ictx.textFragmentSeen = true
ictx.lastTextFragment = box
if stSplitEnd in box.splitType and computed{"position"} != PositionStatic:
# This is UB in CSS 2.1, I can't find a newer spec about it,
# and Gecko can't even layout it consistently (???)
#
# So I'm trying to follow Blink, though it's still not quite right.
# For one, space should really be the sum of all splits of this
# inline box, but I've wasted enough time on this already so I'm
# gonna stop here and say "good enough".
lctx.popPositioned(size(w = 0, h = ictx.state.size.h))
proc positionRelative(lctx: LayoutContext; parent, box: BlockBox) =
let positioned = lctx.resolvePositioned(parent.state.size, box.computed)
if box.computed{"left"}.u != clAuto:
box.state.offset.x += positioned.left
elif box.computed{"right"}.u != clAuto:
box.state.offset.x -= positioned.right
if box.computed{"top"}.u != clAuto:
box.state.offset.y += positioned.top
elif box.computed{"bottom"}.u != clAuto:
box.state.offset.y -= positioned.bottom
# Note: caption is not included here
const RowGroupBox = {
DisplayTableRowGroup, DisplayTableHeaderGroup, DisplayTableFooterGroup
}
const ProperTableChild = RowGroupBox + {
DisplayTableRow, DisplayTableColumn, DisplayTableColumnGroup
}
const ProperTableRowParent = RowGroupBox + {
DisplayTable, DisplayInlineTable
}
type
CellWrapper = ref object
box: BlockBox
coli: int
colspan: int
rowspan: int
reflow: bool
grown: int # number of remaining rows
real: CellWrapper # for filler wrappers
last: bool # is this the last filler?
height: LUnit
baseline: LUnit
RowContext = object
cells: seq[CellWrapper]
reflow: seq[bool]
width: LUnit
height: LUnit
box: BlockBox
ncols: int
ColumnContext = object
minwidth: LUnit
width: LUnit
wspecified: bool
reflow: bool
weight: float64
TableContext = object
lctx: LayoutContext
rows: seq[RowContext]
cols: seq[ColumnContext]
growing: seq[CellWrapper]
maxwidth: LUnit
blockSpacing: LUnit
inlineSpacing: LUnit
space: AvailableSpace # space we got from parent
proc layoutTableCell(lctx: LayoutContext; box: BlockBox;
space: AvailableSpace) =
var sizes = ResolvedSizes(
padding: lctx.resolvePadding(space.w, box.computed),
space: availableSpace(w = space.w, h = maxContent()),
bounds: DefaultBounds
)
if sizes.space.w.isDefinite():
sizes.space.w.u -= sizes.padding[dtHorizontal].sum()
box.state = BoxLayoutState()
var bctx = BlockContext(lctx: lctx)
bctx.layoutFlow(box, sizes, canClear = false)
assert bctx.unpositionedFloats.len == 0
# Table cells ignore margins.
box.state.offset.y = 0
# If the highest float edge is higher than the box itself, set that as
# the box height.
box.state.size.h = max(box.state.size.h, bctx.maxFloatHeight)
if space.h.t == scStretch:
box.state.size.h = max(box.state.size.h, space.h.u -
sizes.padding[dtVertical].sum())
# A table cell's minimum width overrides its width.
box.state.size.w = max(box.state.size.w, box.state.intr.w)
# Sort growing cells, and filter out cells that have grown to their intended
# rowspan.
proc sortGrowing(pctx: var TableContext) =
var i = 0
for j, cellw in pctx.growing:
if pctx.growing[i].grown == 0:
continue
if j != i:
pctx.growing[i] = cellw
inc i
pctx.growing.setLen(i)
pctx.growing.sort(proc(a, b: CellWrapper): int = cmp(a.coli, b.coli))
# Grow cells with a rowspan > 1 (to occupy their place in a new row).
proc growRowspan(pctx: var TableContext; ctx: var RowContext;
growi, i, n: var int; growlen: int) =
while growi < growlen:
let cellw = pctx.growing[growi]
if cellw.coli > n:
break
dec cellw.grown
let colspan = cellw.colspan - (n - cellw.coli)
let rowspanFiller = CellWrapper(
colspan: colspan,
rowspan: cellw.rowspan,
coli: n,
real: cellw,
last: cellw.grown == 0
)
ctx.cells.add(nil)
ctx.cells[i] = rowspanFiller
for i in n ..< n + colspan:
ctx.width += pctx.cols[i].width
ctx.width += pctx.inlineSpacing * 2
n += cellw.colspan
inc i
inc growi
proc preLayoutTableRow(pctx: var TableContext; row, parent: BlockBox;
rowi, numrows: int): RowContext =
var ctx = RowContext(box: row, cells: newSeq[CellWrapper](row.children.len))
var n = 0
var i = 0
var growi = 0
# this increases in the loop, but we only want to check growing cells that
# were added by previous rows.
let growlen = pctx.growing.len
for box in row.children:
assert box.computed{"display"} == DisplayTableCell
pctx.growRowspan(ctx, growi, i, n, growlen)
let colspan = box.computed{"-cha-colspan"}
let rowspan = min(box.computed{"-cha-rowspan"}, numrows - rowi)
let cw = box.computed{"width"}
let ch = box.computed{"height"}
let space = availableSpace(
w = cw.stretchOrMaxContent(pctx.space.w),
h = ch.stretchOrMaxContent(pctx.space.h)
)
#TODO specified table height should be distributed among rows.
# Allow the table cell to use its specified width.
pctx.lctx.layoutTableCell(box, space)
let wrapper = CellWrapper(
box: box,
colspan: colspan,
rowspan: rowspan,
coli: n
)
ctx.cells[i] = wrapper
if rowspan > 1:
pctx.growing.add(wrapper)
wrapper.grown = rowspan - 1
if pctx.cols.len < n + colspan:
pctx.cols.setLen(n + colspan)
if ctx.reflow.len < n + colspan:
ctx.reflow.setLen(n + colspan)
let minw = box.state.intr.w div colspan
let w = box.state.size.w div colspan
for i in n ..< n + colspan:
# Add spacing.
ctx.width += pctx.inlineSpacing
# Figure out this cell's effect on the column's width.
# Four cases exist:
# 1. colwidth already fixed, cell width is fixed: take maximum
# 2. colwidth already fixed, cell width is auto: take colwidth
# 3. colwidth is not fixed, cell width is fixed: take cell width
# 4. neither of colwidth or cell width are fixed: take maximum
if pctx.cols[i].wspecified:
if space.w.isDefinite():
# A specified column already exists; we take the larger width.
if w > pctx.cols[i].width:
pctx.cols[i].width = w
ctx.reflow[i] = true
if pctx.cols[i].width != w:
wrapper.reflow = true
elif space.w.isDefinite():
# This is the first specified column. Replace colwidth with whatever
# we have.
ctx.reflow[i] = true
pctx.cols[i].wspecified = true
pctx.cols[i].width = w
elif w > pctx.cols[i].width:
pctx.cols[i].width = w
ctx.reflow[i] = true
else:
wrapper.reflow = true
if pctx.cols[i].minwidth < minw:
pctx.cols[i].minwidth = minw
if pctx.cols[i].width < minw:
pctx.cols[i].width = minw
ctx.reflow[i] = true
ctx.width += pctx.cols[i].width
# Add spacing to the right side.
ctx.width += pctx.inlineSpacing
n += colspan
inc i
pctx.growRowspan(ctx, growi, i, n, growlen)
pctx.sortGrowing()
when defined(debug):
for cell in ctx.cells:
assert cell != nil
ctx.ncols = n
return ctx
proc alignTableCell(cell: BlockBox; availableHeight, baseline: LUnit) =
case cell.computed{"vertical-align"}.keyword
of VerticalAlignTop:
cell.state.offset.y = 0
of VerticalAlignMiddle:
cell.state.offset.y = availableHeight div 2 - cell.state.size.h div 2
of VerticalAlignBottom:
cell.state.offset.y = availableHeight - cell.state.size.h
else:
cell.state.offset.y = baseline - cell.state.firstBaseline
proc layoutTableRow(tctx: TableContext; ctx: RowContext;
parent, row: BlockBox) =
row.state = BoxLayoutState()
var x: LUnit = 0
var n = 0
var baseline: LUnit = 0
# real cellwrappers of fillers
var toAlign: seq[CellWrapper] = @[]
# cells with rowspan > 1 that must store baseline
var toBaseline: seq[CellWrapper] = @[]
# cells that we must update row height of
var toHeight: seq[CellWrapper] = @[]
for cellw in ctx.cells:
var w: LUnit = 0
for i in n ..< n + cellw.colspan:
w += tctx.cols[i].width
# Add inline spacing for merged columns.
w += tctx.inlineSpacing * (cellw.colspan - 1) * 2
if cellw.reflow and cellw.box != nil:
# Do not allow the table cell to make use of its specified width.
# e.g. in the following table
#
# the TD with a width of 5ch should be 9ch wide as well.
let space = availableSpace(w = stretch(w), h = maxContent())
tctx.lctx.layoutTableCell(cellw.box, space)
w = max(w, cellw.box.state.size.w)
let cell = cellw.box
x += tctx.inlineSpacing
if cell != nil:
cell.state.offset.x += x
x += tctx.inlineSpacing
x += w
n += cellw.colspan
const HasNoBaseline = {
VerticalAlignTop, VerticalAlignMiddle, VerticalAlignBottom
}
if cell != nil:
if cell.computed{"vertical-align"}.keyword notin HasNoBaseline: # baseline
baseline = max(cell.state.firstBaseline, baseline)
if cellw.rowspan > 1:
toBaseline.add(cellw)
if cellw.rowspan > 1:
toHeight.add(cellw)
row.state.size.h = max(row.state.size.h,
cell.state.size.h div cellw.rowspan)
else:
row.state.size.h = max(row.state.size.h,
cellw.real.box.state.size.h div cellw.rowspan)
toHeight.add(cellw.real)
if cellw.last:
toAlign.add(cellw.real)
for cellw in toHeight:
cellw.height += row.state.size.h
for cellw in toBaseline:
cellw.baseline = baseline
for cellw in toAlign:
alignTableCell(cellw.box, cellw.height, cellw.baseline)
for cell in row.children:
alignTableCell(cell, row.state.size.h, baseline)
row.state.size.w = x
proc preLayoutTableRows(tctx: var TableContext; rows: openArray[BlockBox];
table: BlockBox) =
for i, row in rows.mypairs:
let rctx = tctx.preLayoutTableRow(row, table, i, rows.len)
tctx.rows.add(rctx)
tctx.maxwidth = max(rctx.width, tctx.maxwidth)
proc preLayoutTableRows(tctx: var TableContext; table: BlockBox) =
# Use separate seqs for different row groups, so that e.g. this HTML:
# echo '
worldhello'|cha -T text/html
# is rendered as:
# hello
# world
var thead: seq[BlockBox] = @[]
var tbody: seq[BlockBox] = @[]
var tfoot: seq[BlockBox] = @[]
for child in table.children:
case child.computed{"display"}
of DisplayTableRow: tbody.add(child)
of DisplayTableHeaderGroup: thead.add(child.children)
of DisplayTableRowGroup: tbody.add(child.children)
of DisplayTableFooterGroup: tfoot.add(child.children)
else: assert false
tctx.preLayoutTableRows(thead, table)
tctx.preLayoutTableRows(tbody, table)
tctx.preLayoutTableRows(tfoot, table)
func calcSpecifiedRatio(tctx: TableContext; W: LUnit): LUnit =
var totalSpecified: LUnit = 0
var hasUnspecified = false
for col in tctx.cols:
if col.wspecified:
totalSpecified += col.width
else:
hasUnspecified = true
totalSpecified += col.minwidth
# Only grow specified columns if no unspecified column exists to take the
# rest of the space.
if totalSpecified == 0 or W > totalSpecified and hasUnspecified:
return 1
return W div totalSpecified
proc calcUnspecifiedColIndices(tctx: var TableContext; W: var LUnit;
weight: var float64): seq[int] =
let specifiedRatio = tctx.calcSpecifiedRatio(W)
# Spacing for each column:
var avail = newSeqOfCap[int](tctx.cols.len)
for i, col in tctx.cols.mpairs:
if not col.wspecified:
avail.add(i)
let w = if col.width < W:
toFloat64(col.width)
else:
toFloat64(W) * (ln(toFloat64(col.width) / toFloat64(W)) + 1)
col.weight = w
weight += w
else:
if specifiedRatio != 1:
col.width *= specifiedRatio
col.reflow = true
W -= col.width
return avail
func needsRedistribution(tctx: TableContext; computed: CSSValues):
bool =
case tctx.space.w.t
of scMinContent, scMaxContent:
return false
of scStretch:
return tctx.space.w.u != tctx.maxwidth
of scFitContent:
return tctx.space.w.u > tctx.maxwidth and computed{"width"}.u != clAuto or
tctx.space.w.u < tctx.maxwidth
proc redistributeWidth(tctx: var TableContext) =
# Remove inline spacing from distributable width.
var W = tctx.space.w.u - tctx.cols.len * tctx.inlineSpacing * 2
var weight = 0f64
var avail = tctx.calcUnspecifiedColIndices(W, weight)
var redo = true
while redo and avail.len > 0 and weight != 0:
if weight == 0: break # zero weight; nothing to distribute
if W < 0:
W = 0
redo = false
# divide delta width by sum of ln(width) for all elem in avail
let unit = toFloat64(W) / weight
weight = 0
for i in countdown(avail.high, 0):
let j = avail[i]
let x = (unit * tctx.cols[j].weight).toLUnit()
let mw = tctx.cols[j].minwidth
tctx.cols[j].width = x
if mw > x:
W -= mw
tctx.cols[j].width = mw
avail.del(i)
redo = true
else:
weight += tctx.cols[j].weight
tctx.cols[j].reflow = true
proc reflowTableCells(tctx: var TableContext) =
for i in countdown(tctx.rows.high, 0):
var row = addr tctx.rows[i]
var n = tctx.cols.len - 1
for j in countdown(row.cells.high, 0):
let m = n - row.cells[j].colspan
while n > m:
if tctx.cols[n].reflow:
row.cells[j].reflow = true
if n < row.reflow.len and row.reflow[n]:
tctx.cols[n].reflow = true
dec n
proc layoutTableRows(tctx: TableContext; table: BlockBox;
sizes: ResolvedSizes) =
var y: LUnit = 0
for roww in tctx.rows:
if roww.box.computed{"visibility"} == VisibilityCollapse:
continue
y += tctx.blockSpacing
let row = roww.box
tctx.layoutTableRow(roww, table, row)
row.state.offset.y += y
row.state.offset.x += sizes.padding.left
row.state.size.w += sizes.padding[dtHorizontal].sum()
y += tctx.blockSpacing
y += row.state.size.h
table.state.size.w = max(row.state.size.w, table.state.size.w)
# Note: we can't use applySizeConstraint here; in CSS, "height" on tables just
# sets the minimum height.
case tctx.space.h.t
of scStretch:
table.state.size.h = max(tctx.space.h.u, y)
of scMinContent, scMaxContent, scFitContent:
# I don't think these are ever used here; not that they make much sense for
# min-height...
table.state.size.h = y
proc layoutCaption(tctx: TableContext; parent, box: BlockBox) =
let lctx = tctx.lctx
let space = availableSpace(w = stretch(parent.state.size.w), h = maxContent())
let sizes = lctx.resolveBlockSizes(space, box.computed)
lctx.layoutRootBlock(box, offset(x = sizes.margin.left, y = 0), sizes)
box.state.offset.x += sizes.margin.left
box.state.offset.y += sizes.margin.top
let outerHeight = box.outerSize(dtVertical, sizes) + box.state.marginBottom
let outerWidth = box.outerSize(dtHorizontal, sizes)
let table = parent.children[0]
case box.computed{"caption-side"}
of CaptionSideTop, CaptionSideBlockStart:
table.state.offset.y += outerHeight
of CaptionSideBottom, CaptionSideBlockEnd:
box.state.offset.y += table.state.size.h
parent.state.size.w = max(parent.state.size.w, outerWidth)
parent.state.intr.w = max(parent.state.intr.w, box.state.intr.w)
parent.state.size.h += outerHeight
parent.state.intr.h += outerHeight - box.state.size.h + box.state.intr.h
# Table layout. We try to emulate w3m's behavior here:
# 1. Calculate minimum and preferred width of each column
# 2. If column width is not auto, set width to max(min_col_width, specified)
# 3. Calculate the maximum preferred row width. If this is
# a) less than the specified table width, or
# b) greater than the table's content width:
# Distribute the table's content width among cells with an unspecified
# width. If this would give any cell a width < min_width, set that
# cell's width to min_width, then re-do the distribution.
proc layoutTable(tctx: var TableContext; table, parent: BlockBox;
sizes: ResolvedSizes) =
if table.computed{"border-collapse"} != BorderCollapseCollapse:
let spc = table.computed{"border-spacing"}
if spc != nil:
tctx.inlineSpacing = table.computed{"border-spacing"}.a.px(0)
tctx.blockSpacing = table.computed{"border-spacing"}.b.px(0)
tctx.preLayoutTableRows(table) # first pass
# Percentage sizes have been resolved; switch the table's space to
# fit-content if its width is auto.
# (Note that we call canpx on space, which might have been changed by
# specified width. This isn't a problem however, because canpx will
# still return true after that.)
if tctx.space.w.t == scStretch:
if not parent.computed{"width"}.canpx(tctx.space.w):
tctx.space.w = fitContent(tctx.space.w.u)
else:
table.state.intr.w = tctx.space.w.u
if tctx.needsRedistribution(table.computed):
tctx.redistributeWidth()
for col in tctx.cols:
table.state.size.w += col.width
tctx.reflowTableCells()
tctx.layoutTableRows(table, sizes) # second pass
# Table height is minimum by default, and non-negotiable when
# specified, ergo it always equals the intrinisc minimum height.
table.state.intr.h = table.state.size.h
# As per standard, we must put the caption outside the actual table, inside a
# block-level wrapper box.
proc layoutTableWrapper(bctx: BlockContext; box: BlockBox;
sizes: ResolvedSizes) =
let table = box.children[0]
table.state = BoxLayoutState()
var tctx = TableContext(lctx: bctx.lctx, space: sizes.space)
tctx.layoutTable(table, box, sizes)
box.state.size = table.state.size
box.state.baseline = table.state.size.h
box.state.firstBaseline = table.state.size.h
box.state.intr = table.state.intr
if box.children.len > 1:
# do it here, so that caption's box can stretch to our width
let caption = box.children[1]
#TODO also count caption width in table width
tctx.layoutCaption(box, caption)
proc layout(bctx: var BlockContext; box: BlockBox; sizes: ResolvedSizes;
canClear: bool) =
case box.computed{"display"}
of DisplayBlock, DisplayFlowRoot, DisplayTableCaption, DisplayInlineBlock:
bctx.layoutFlow(box, sizes, canClear)
of DisplayListItem:
bctx.layoutListItem(box, sizes)
of DisplayTableWrapper, DisplayInlineTableWrapper:
bctx.layoutTableWrapper(box, sizes)
of DisplayFlex, DisplayInlineFlex:
bctx.layoutFlex(box, sizes)
else:
assert false
type
FlexWeightType = enum
fwtGrow, fwtShrink
FlexPendingItem = object
child: BlockBox
weights: array[FlexWeightType, float64]
sizes: ResolvedSizes
FlexContext = object
mains: seq[FlexMainContext]
offset: Offset
lctx: LayoutContext
totalMaxSize: Size
intr: Size # intrinsic minimum size
box: BlockBox
relativeChildren: seq[BlockBox]
redistSpace: SizeConstraint
FlexMainContext = object
totalSize: Size
maxSize: Size
shrinkSize: LUnit
maxMargin: RelativeRect
totalWeight: array[FlexWeightType, float64]
pending: seq[FlexPendingItem]
proc layoutFlexItem(lctx: LayoutContext; box: BlockBox; sizes: ResolvedSizes) =
lctx.layoutRootBlock(box, offset(x = 0, y = 0), sizes, includeMargin = true)
const FlexRow = {FlexDirectionRow, FlexDirectionRowReverse}
proc updateMaxSizes(mctx: var FlexMainContext; child: BlockBox;
sizes: ResolvedSizes) =
for dim in DimensionType:
mctx.maxSize[dim] = max(mctx.maxSize[dim], child.state.size[dim])
mctx.maxMargin[dim].start = max(mctx.maxMargin[dim].start,
sizes.margin[dim].start)
mctx.maxMargin[dim].send = max(mctx.maxMargin[dim].send,
sizes.margin[dim].send)
proc redistributeMainSize(mctx: var FlexMainContext; diff: LUnit;
wt: FlexWeightType; dim: DimensionType; lctx: LayoutContext) =
var diff = diff
var totalWeight = mctx.totalWeight[wt]
let odim = dim.opposite
while (wt == fwtGrow and diff > 0 or wt == fwtShrink and diff < 0) and
totalWeight > 0:
# redo maxSize calculation; we only need height here
mctx.maxSize[odim] = 0
var udiv = totalWeight
if wt == fwtShrink:
udiv *= mctx.shrinkSize.toFloat64() / totalWeight
let unit = if udiv != 0:
diff.toFloat64() / udiv
else:
0
# reset total weight & available diff for the next iteration (if there is
# one)
totalWeight = 0
diff = 0
for it in mctx.pending.mitems:
if it.weights[wt] == 0:
mctx.updateMaxSizes(it.child, it.sizes)
continue
var uw = unit * it.weights[wt]
if wt == fwtShrink:
uw *= it.child.state.size[dim].toFloat64()
var u = it.child.state.size[dim] + uw.toLUnit()
# check for min/max violation
let minu = max(it.child.state.intr[dim], it.sizes.bounds.a[dim].start)
if minu > u:
# min violation
if wt == fwtShrink: # freeze
diff += u - minu
it.weights[wt] = 0
mctx.shrinkSize -= it.child.state.size[dim]
u = minu
it.sizes.bounds.mi[dim].start = u
let maxu = max(minu, it.sizes.bounds.a[dim].send)
if maxu < u:
# max violation
if wt == fwtGrow: # freeze
diff += u - maxu
it.weights[wt] = 0
u = maxu
it.sizes.bounds.mi[dim].send = u
u -= it.sizes.padding[dim].sum()
it.sizes.space[dim] = stretch(u)
# override minimum intrinsic size clamping too
totalWeight += it.weights[wt]
#TODO we should call this only on freeze, and then put another loop to
# the end for non-frozen items
lctx.layoutFlexItem(it.child, it.sizes)
mctx.updateMaxSizes(it.child, it.sizes)
proc flushMain(fctx: var FlexContext; mctx: var FlexMainContext;
sizes: ResolvedSizes; dim: DimensionType; canWrap: bool) =
let odim = dim.opposite
let lctx = fctx.lctx
if fctx.redistSpace.isDefinite:
let diff = fctx.redistSpace.u - mctx.totalSize[dim]
let wt = if diff > 0: fwtGrow else: fwtShrink
# Do not grow shrink-to-fit sizes.
if wt == fwtShrink or fctx.redistSpace.t == scStretch:
mctx.redistributeMainSize(diff, wt, dim, lctx)
elif sizes.bounds.a[dim].start > 0:
# Override with min-width/min-height, but *only* if we are smaller
# than the desired size. (Otherwise, we would incorrectly limit
# max-content size when only a min-width is requested.)
if sizes.bounds.a[dim].start > mctx.totalSize[dim]:
let diff = sizes.bounds.a[dim].start - mctx.totalSize[dim]
mctx.redistributeMainSize(diff, fwtGrow, dim, lctx)
let maxMarginSum = mctx.maxMargin[odim].sum()
let h = mctx.maxSize[odim] + maxMarginSum
var intr = size(w = 0, h = 0)
var offset = fctx.offset
for it in mctx.pending.mitems:
if it.child.state.size[odim] < h and not it.sizes.space[odim].isDefinite:
# if the max height is greater than our height, then take max height
# instead. (if the box's available height is definite, then this will
# change nothing, so we skip it as an optimization.)
it.sizes.space[odim] = stretch(h - it.sizes.margin[odim].sum())
if odim == dtVertical:
# Do not include the bottom margin; space only applies to the
# actual height.
it.sizes.space[odim].u -= it.child.state.marginBottom
lctx.layoutFlexItem(it.child, it.sizes)
offset[dim] += it.sizes.margin[dim].start
it.child.state.offset[dim] += offset[dim]
# margins are added here, since they belong to the flex item.
it.child.state.offset[odim] += offset[odim] + it.sizes.margin[odim].start
offset[dim] += it.child.state.size[dim]
offset[dim] += it.sizes.margin[dim].send
let intru = it.child.state.intr[dim] + it.sizes.margin[dim].sum()
if canWrap:
intr[dim] = max(intr[dim], intru)
else:
intr[dim] += intru
intr[odim] = max(it.child.state.intr[odim], intr[odim])
if it.child.computed{"position"} == PositionRelative:
fctx.relativeChildren.add(it.child)
fctx.totalMaxSize[dim] = max(fctx.totalMaxSize[dim], offset[dim])
fctx.mains.add(mctx)
fctx.intr[dim] = max(fctx.intr[dim], intr[dim])
fctx.intr[odim] += intr[odim] + maxMarginSum
mctx = FlexMainContext()
fctx.offset[odim] += h
proc layoutFlex(bctx: var BlockContext; box: BlockBox; sizes: ResolvedSizes) =
assert box.inline == nil
let lctx = bctx.lctx
if box.computed{"position"} != PositionStatic:
lctx.pushPositioned()
let flexDir = box.computed{"flex-direction"}
let dim = if flexDir in FlexRow: dtHorizontal else: dtVertical
let odim = dim.opposite()
var fctx = FlexContext(
lctx: lctx,
box: box,
offset: sizes.padding.topLeft,
redistSpace: sizes.space[dim]
)
if fctx.redistSpace.t == scFitContent and sizes.bounds.a[dim].start > 0:
fctx.redistSpace = stretch(sizes.bounds.a[dim].start)
if fctx.redistSpace.isDefinite:
fctx.redistSpace.u = fctx.redistSpace.u.minClamp(sizes.bounds.a[dim])
var mctx = FlexMainContext()
let canWrap = box.computed{"flex-wrap"} != FlexWrapNowrap
for child in box.children:
var childSizes = lctx.resolveFlexItemSizes(sizes.space, dim, child.computed)
let flexBasis = child.computed{"flex-basis"}
lctx.layoutFlexItem(child, childSizes)
if flexBasis.u != clAuto and sizes.space[dim].isDefinite:
# we can't skip this pass; it is needed to calculate the minimum
# height.
let minu = child.state.intr[dim]
childSizes.space[dim] = stretch(flexBasis.spx(sizes.space[dim],
child.computed, childSizes.padding[dim].sum()))
if minu > childSizes.space[dim].u:
# First pass gave us a box that is thinner than the minimum
# acceptable width for whatever reason; this may have happened
# because the initial flex basis was e.g. 0. Try to resize it to
# something more usable.
childSizes.space[dim] = stretch(minu)
lctx.layoutFlexItem(child, childSizes)
if child.computed{"position"} in {PositionAbsolute, PositionFixed}:
# Absolutely positioned flex children do not participate in flex layout.
lctx.queueAbsolute(child, offset(x = 0, y = 0))
continue
if canWrap and (sizes.space[dim].t == scMinContent or
sizes.space[dim].isDefinite and
mctx.totalSize[dim] + child.state.size[dim] > sizes.space[dim].u):
fctx.flushMain(mctx, sizes, dim, canWrap)
let outerSize = child.outerSize(dim, childSizes)
mctx.updateMaxSizes(child, childSizes)
let grow = child.computed{"flex-grow"}
let shrink = child.computed{"flex-shrink"}
mctx.totalWeight[fwtGrow] += grow
mctx.totalWeight[fwtShrink] += shrink
mctx.totalSize[dim] += outerSize
if shrink != 0:
mctx.shrinkSize += outerSize
mctx.pending.add(FlexPendingItem(
child: child,
weights: [grow, shrink],
sizes: childSizes
))
if mctx.pending.len > 0:
fctx.flushMain(mctx, sizes, dim, canWrap)
box.applyBaseline()
var size = fctx.totalMaxSize
size[odim] = fctx.offset[odim]
box.applySize(sizes, size, sizes.space)
box.applyIntr(sizes, fctx.intr)
for child in fctx.relativeChildren:
lctx.positionRelative(box, child)
if box.computed{"position"} != PositionStatic:
lctx.popPositioned(box.state.size)
# Inner layout for boxes that establish a new block formatting context.
# Returns the bottom margin for the box, collapsed with the appropriate
# margins from its descendants.
proc layoutRootBlock(lctx: LayoutContext; box: BlockBox; offset: Offset;
sizes: ResolvedSizes; includeMargin = false) =
if box.sizes == sizes:
box.state.offset = offset
return
box.sizes = sizes
var bctx = BlockContext(lctx: lctx)
box.state = BoxLayoutState(offset: offset)
bctx.layout(box, sizes, canClear = false)
assert bctx.unpositionedFloats.len == 0
let marginBottom = bctx.marginTodo.sum()
if includeMargin:
box.state.size.h += marginBottom
else:
bctx.maxFloatHeight -= marginBottom
# If the highest float edge is higher than the box itself, set that as
# the box height.
box.state.size.h = max(box.state.size.h, bctx.maxFloatHeight)
box.state.intr.h = max(box.state.intr.h, bctx.maxFloatHeight)
box.state.marginBottom = marginBottom
proc initBlockPositionStates(state: var BlockState; bctx: var BlockContext;
box: BlockBox) =
let prevBps = bctx.ancestorsHead
bctx.ancestorsHead = BlockPositionState(
box: box,
offset: state.offset,
resolved: bctx.parentBps == nil
)
if prevBps != nil:
prevBps.next = bctx.ancestorsHead
if bctx.parentBps != nil:
bctx.ancestorsHead.offset += bctx.parentBps.offset
# If parentBps is not nil, then our starting position is not in a new
# BFC -> we must add it to our BFC offset.
bctx.ancestorsHead.offset += box.state.offset
if bctx.marginTarget == nil:
bctx.marginTarget = bctx.ancestorsHead
state.initialMarginTarget = bctx.marginTarget
state.initialTargetOffset = bctx.marginTarget.offset
if bctx.parentBps == nil:
# We have just established a new BFC. Resolve the margins immediately.
bctx.marginTarget = nil
state.prevParentBps = bctx.parentBps
bctx.parentBps = bctx.ancestorsHead
state.initialParentOffset = bctx.parentBps.offset
func isParentResolved(state: BlockState; bctx: BlockContext): bool =
return bctx.marginTarget != state.initialMarginTarget or
state.prevParentBps != nil and state.prevParentBps.resolved
# Layout a block-level child inside the same block formatting context as
# its parent.
# Returns the block's outer size.
# Stores its resolved size data in `sizes'.
proc layoutBlockChild(state: var BlockState; bctx: var BlockContext;
child: BlockBox; sizes: var ResolvedSizes): Size =
sizes = bctx.lctx.resolveBlockSizes(state.space, child.computed)
bctx.marginTodo.append(sizes.margin.top)
child.state = BoxLayoutState(offset: offset(x = sizes.margin.left, y = 0))
child.state.offset += state.offset
bctx.layout(child, sizes, canClear = true)
bctx.marginTodo.append(sizes.margin.bottom)
return size(
w = child.outerSize(dtHorizontal, sizes),
# delta y is difference between old and new offsets (margin-top),
# plus height.
h = child.state.offset.y - state.offset.y + child.state.size.h
)
# Outer layout for block-level children that establish a BFC.
# Returns the block's outer size.
# Stores its resolved size data in `sizes'.
# For floats, the margin offset is returned in marginOffset.
proc layoutBlockChildBFC(state: var BlockState; bctx: var BlockContext;
child: BlockBox; sizes: var ResolvedSizes; space: var AvailableSpace):
Size =
assert child.computed{"position"} != PositionAbsolute
let lctx = bctx.lctx
var outerHeight: LUnit
if child.computed{"float"} == FloatNone:
sizes = lctx.resolveBlockSizes(state.space, child.computed)
var offset = state.offset
offset.x += sizes.margin.left
bctx.lctx.layoutRootBlock(child, offset, sizes)
bctx.marginTodo.append(sizes.margin.top)
bctx.flushMargins(child)
bctx.positionFloats()
bctx.marginTodo.append(sizes.margin.bottom)
if child.computed{"clear"} != ClearNone:
state.offset.y.clearFloats(bctx, bctx.bfcOffset.y,
child.computed{"clear"})
if bctx.exclusions.len > 0:
# From the standard (abridged):
#
# > The border box of an element that establishes a new BFC must
# > not overlap the margin box of any floats in the same BFC. If
# > necessary, implementations should clear the said element, but
# > may place it adjacent to such floats if there is sufficient
# > space. CSS2 does not define when a UA may put said element
# > next to the float.
#
# ...thanks for nothing. So here's what we do:
#
# * run a normal pass
# * place the longest word (i.e. intr.w) somewhere
# * run another pass with the placement we got
#
# Some browsers prefer to try again until they find enough
# available space; I won't do that because it's unnecessarily
# complex and slow. (Maybe one day, when layout is faster...)
#
# Note that this does not apply to absolutely positioned elements,
# as those ignore floats.
let pbfcOffset = bctx.bfcOffset
let bfcOffset = offset(
x = pbfcOffset.x + child.state.offset.x,
y = max(pbfcOffset.y + child.state.offset.y, bctx.clearOffset)
)
let minSize = size(w = child.state.intr.w, h = bctx.lctx.attrs.ppl)
var outw: LUnit
let offset = bctx.findNextBlockOffset(bfcOffset, minSize, state.space,
outw)
let roffset = offset - pbfcOffset
# skip relayout if we can
if outw != state.space.w.u or roffset != child.state.offset:
space = availableSpace(w = stretch(outw), h = state.space.h)
sizes = lctx.resolveBlockSizes(space, child.computed)
lctx.layoutRootBlock(child, roffset, sizes)
# delta y is difference between old and new offsets (margin-top
# plus any movement caused by floats), sum of margin todo in bctx
# (margin-bottom) + height.
outerHeight = child.state.offset.y - state.offset.y + child.state.size.h +
child.state.marginBottom
else:
sizes = lctx.resolveFloatSizes(space, child.computed)
bctx.lctx.layoutRootBlock(child, state.offset + sizes.margin.topLeft, sizes)
if state.isParentResolved(bctx):
# If parent offset has been resolved, use marginTodo in this
# float's initial offset.
child.state.offset.y += bctx.marginTodo.sum()
outerHeight = child.outerSize(dtVertical, sizes) + child.state.marginBottom
return size(
w = child.outerSize(dtHorizontal, sizes),
h = outerHeight
)
# Note: this does not include display types that cannot appear as block
# children.
func establishesBFC(computed: CSSValues): bool =
return computed{"float"} != FloatNone or
computed{"display"} in {DisplayFlowRoot, DisplayTable, DisplayTableWrapper,
DisplayFlex} or
computed{"overflow-x"} notin {OverflowVisible, OverflowClip}
#TODO contain, grid, multicol, column-span
# Layout and place all children in the block box.
# Box placement must occur during this pass, since child box layout in the
# same block formatting context depends on knowing where the box offset is
# (because of floats).
proc layoutBlockChildren(state: var BlockState; bctx: var BlockContext;
parent: BlockBox) =
var textAlign = parent.computed{"text-align"}
if not state.space.w.isDefinite():
# Aligning min-content or max-content is nonsensical.
textAlign = TextAlignLeft
for child in parent.children:
if child.computed{"position"} in {PositionAbsolute, PositionFixed}:
# Delay this block's layout until its parent's dimensions are
# actually known.
# We want to get the child to a Y position where it would have
# been placed had it not been absolutely positioned.
#
# Like with floats, we must consider both the case where the
# parent's position is resolved, and the case where it isn't.
# Here our job is much easier in the unresolved case: subsequent
# children's layout doesn't depend on our position; so we can just
# defer margin resolution to the parent.
var offset = state.offset
if bctx.marginTarget != state.initialMarginTarget:
offset.y += bctx.marginTodo.sum()
bctx.lctx.queueAbsolute(child, offset)
continue
var sizes: ResolvedSizes
var space = state.space
let outerSize = if child.computed.establishesBFC():
state.layoutBlockChildBFC(bctx, child, sizes, space)
else:
state.layoutBlockChild(bctx, child, sizes)
state.intr.w = max(state.intr.w, child.state.intr.w)
if child.computed{"float"} == FloatNone:
# Assume we will stretch to the maximum width, and re-layout if
# this assumption turns out to be wrong.
if parent.computed{"text-align"} == TextAlignChaCenter:
child.state.offset.x += max(state.space.w.u div 2 -
child.state.size.w div 2, 0)
elif textAlign == TextAlignChaRight:
child.state.offset.x += max(state.space.w.u - child.state.size.w -
sizes.margin.right, 0)
if child.computed{"position"} == PositionRelative:
state.relativeChildren.add(child)
state.maxChildWidth = max(state.maxChildWidth, outerSize.w)
state.offset.y += outerSize.h
state.intr.h += outerSize.h - child.state.size.h + child.state.intr.h
elif state.space.w.t == scFitContent:
# Float position depends on the available width, but in this case
# the parent width is not known.
#
# Set the "re-layout" flag, and skip this box.
# (If child boxes with fit-content have floats, those will be
# re-layouted too first, so we do not have to consider those here.)
state.needsReLayout = true
# Since we emulate max-content here, the float will not contribute to
# maxChildWidth in this iteration; instead, its outer width will be
# summed up in totalFloatWidth and added to maxChildWidth in
# initReLayout.
state.totalFloatWidth += outerSize.w
else:
state.maxChildWidth = max(state.maxChildWidth, outerSize.w)
# Two cases exist:
# a) The float cannot be positioned, because `box' has not resolved
# its y offset yet. (e.g. if float comes before the first child,
# we do not know yet if said child will move our y offset with a
# margin-top value larger than ours.)
# In this case we put it in unpositionedFloats, and defer positioning
# until our y offset is resolved.
# b) `box' has resolved its y offset, so the float can already
# be positioned.
# We check whether our y offset has been positioned as follows:
# * save marginTarget in BlockState at layoutBlock's start
# * if our saved marginTarget and bctx's marginTarget no longer point
# to the same object, that means our (or an ancestor's) offset has
# been resolved, i.e. we can position floats already.
let marginOffset = sizes.margin.startOffset()
if bctx.marginTarget != state.initialMarginTarget:
# y offset resolved
bctx.positionFloat(child, state.space, outerSize, marginOffset,
bctx.parentBps.offset)
else:
bctx.unpositionedFloats.add(UnpositionedFloat(
space: state.space,
parentBps: bctx.parentBps,
box: child,
marginOffset: marginOffset,
outerSize: outerSize
))
# Unlucky path, where we have floating blocks and a fit-content width.
# Reset marginTodo & the starting offset, and stretch the box to the
# max child width.
proc initReLayout(state: var BlockState; bctx: var BlockContext;
box: BlockBox; sizes: ResolvedSizes) =
bctx.marginTodo = state.oldMarginTodo
# Note: we do not reset our own BlockPositionState's offset; we assume it
# has already been resolved in the previous pass.
# (If not, it won't be resolved in this pass either, so the following code
# does not really change anything.)
bctx.parentBps.next = nil
if state.initialMarginTarget != bctx.marginTarget:
# Reset the initial margin target to its previous state, and then set
# it as the marginTarget again.
# Two solutions exist:
# a) Store the initial margin target offset, then restore it here. Seems
# clean, but it would require a linked list traversal to update all
# child margin positions.
# b) Re-use the previous margin target offsets; they are guaranteed
# to remain the same, because out-of-flow elements (like floats) do not
# participate in margin resolution. We do this by setting the margin
# target to a dummy object, which is a small price to pay compared
# to solution a).
bctx.marginTarget = BlockPositionState(
# Use initialTargetOffset to emulate the BFC positioning of the
# previous pass.
offset: state.initialTargetOffset,
resolved: state.initialMarginTarget.resolved
)
# Also set ancestorsHead as the dummy object, so next elements are
# chained to that.
bctx.ancestorsHead = bctx.marginTarget
if state.prevParentBps == nil:
# We have just established a new BFC. Resolve the margins immediately.
bctx.marginTarget = nil
bctx.exclusions.setLen(state.oldExclusionsLen)
state.offset = sizes.padding.topLeft
box.applySize(sizes, state.maxChildWidth + state.totalFloatWidth, sizes.space,
dtHorizontal)
state.space.w = stretch(box.state.size.w)
proc layoutBlock(bctx: var BlockContext; box: BlockBox; sizes: ResolvedSizes) =
let lctx = bctx.lctx
if box.computed{"position"} != PositionStatic:
lctx.pushPositioned()
var state = BlockState(
offset: sizes.padding.topLeft,
space: sizes.space,
oldMarginTodo: bctx.marginTodo,
oldExclusionsLen: bctx.exclusions.len
)
state.initBlockPositionStates(bctx, box)
state.layoutBlockChildren(bctx, box)
if state.needsReLayout or state.space.w.t == scFitContent:
state.initReLayout(bctx, box, sizes)
state.layoutBlockChildren(bctx, box)
box.applyBaseline()
# Apply width, and height. For height, temporarily remove padding we have
# applied before so that percentage resolution works correctly.
let childSize = size(
w = state.maxChildWidth,
h = state.offset.y - sizes.padding.top
)
box.applySize(sizes, childSize, state.space)
let paddingSum = sizes.padding.sum()
# Intrinsic minimum size includes the sum of our padding. (However,
# this padding must also be clamped to the same bounds.)
box.applyIntr(sizes, state.intr + paddingSum)
# `position: relative' percentages can now be resolved.
for child in state.relativeChildren:
lctx.positionRelative(box, child)
# Add padding; we cannot do this further up without influencing
# relative positioning.
box.state.size += paddingSum
if state.isParentResolved(bctx):
# Our offset has already been resolved, ergo any margins in marginTodo will
# be passed onto the next box. Set marginTarget to nil, so that if we (or
# one of our ancestors) were still set as a marginTarget, we no longer are.
bctx.positionFloats()
bctx.marginTarget = nil
# Reset parentBps to the previous node.
bctx.parentBps = state.prevParentBps
if box.computed{"position"} != PositionStatic:
lctx.popPositioned(box.state.size)
# 1st pass: build tree
proc newMarkerBox(computed: CSSValues; listItemCounter: int):
InlineBox =
let computed = computed.inheritProperties()
computed{"display"} = DisplayInline
# Use pre, so the space at the end of the default markers isn't ignored.
computed{"white-space"} = WhitespacePre
let s = computed{"list-style-type"}.listMarker(listItemCounter)
return InlineBox(
t: ibtText,
computed: computed,
text: newStyledText(s)
)
type BlockBuilderContext = object
styledNode: StyledNode
outer: BlockBox
lctx: LayoutContext
anonRow: BlockBox
anonTableWrapper: BlockBox
inlineAnonRow: BlockBox
inlineAnonTableWrapper: BlockBox
quoteLevel: int
listItemCounter: int
listItemReset: bool
parent: ptr BlockBuilderContext
inlineStack: seq[StyledNode]
inlineStackFragments: seq[InlineBox]
# if inline is not nil, then inline.children.len > 0
inline: InlineBox
proc flushTable(ctx: var BlockBuilderContext)
proc flushInlineGroup(ctx: var BlockBuilderContext) =
if ctx.inline != nil:
ctx.flushTable()
let computed = ctx.outer.computed.inheritProperties()
computed{"display"} = DisplayBlock
let box = BlockBox(computed: computed, inline: ctx.inline)
ctx.outer.children.add(box)
ctx.inline = nil
# Don't build empty anonymous inline blocks between block boxes
func canBuildAnonInline(ctx: BlockBuilderContext; computed: CSSValues;
str: string): bool =
return ctx.inline != nil and ctx.inline.children.len > 0 or
computed.whitespacepre or not str.onlyWhitespace()
# Forward declarations
proc buildBlock(ctx: var BlockBuilderContext)
proc buildTable(ctx: var BlockBuilderContext)
proc buildFlex(ctx: var BlockBuilderContext)
proc buildInlineBoxes(ctx: var BlockBuilderContext; styledNode: StyledNode;
computed: CSSValues)
proc buildTableRowGroup(parent: var BlockBuilderContext; styledNode: StyledNode;
computed: CSSValues): BlockBox
proc buildTableRow(parent: var BlockBuilderContext; styledNode: StyledNode;
computed: CSSValues): BlockBox
proc buildTableCell(parent: var BlockBuilderContext; styledNode: StyledNode;
computed: CSSValues): BlockBox
proc buildTableCaption(parent: var BlockBuilderContext; styledNode: StyledNode;
computed: CSSValues): BlockBox
proc initBlockBuilderContext(styledNode: StyledNode; box: BlockBox;
lctx: LayoutContext; parent: ptr BlockBuilderContext): BlockBuilderContext
proc pushInline(ctx: var BlockBuilderContext; box: InlineBox)
proc pushInlineBlock(ctx: var BlockBuilderContext; styledNode: StyledNode;
computed: CSSValues)
func toTableWrapper(display: CSSDisplay): CSSDisplay =
if display == DisplayTable:
return DisplayTableWrapper
assert display == DisplayInlineTable
return DisplayInlineTableWrapper
proc createAnonTable(ctx: var BlockBuilderContext; computed: CSSValues):
BlockBox =
let inline = ctx.inlineStack.len > 0
if not inline and ctx.anonTableWrapper == nil or
inline and ctx.inlineAnonTableWrapper == nil:
let inherited = computed.inheritProperties()
let (outerComputed, innerComputed) = inherited.splitTable()
outerComputed{"display"} = if inline:
DisplayInlineTableWrapper
else:
DisplayTableWrapper
let innerTable = BlockBox(computed: innerComputed)
let box = BlockBox(
computed: outerComputed,
children: @[innerTable]
)
if inline:
ctx.inlineAnonTableWrapper = box
else:
ctx.anonTableWrapper = box
return box
if inline:
return ctx.inlineAnonTableWrapper
return ctx.anonTableWrapper
proc createAnonRow(ctx: var BlockBuilderContext): BlockBox =
let inline = ctx.inlineStack.len > 0
if not inline and ctx.anonRow == nil or
inline and ctx.inlineAnonRow == nil:
let wrapperVals = ctx.outer.computed.inheritProperties()
wrapperVals{"display"} = DisplayTableRow
let box = BlockBox(computed: wrapperVals)
if inline:
ctx.inlineAnonRow = box
else:
ctx.anonRow = box
return box
if inline:
return ctx.inlineAnonRow
return ctx.anonRow
proc flushTableRow(ctx: var BlockBuilderContext) =
if ctx.anonRow != nil:
if ctx.outer.computed{"display"} in ProperTableRowParent:
ctx.outer.children.add(ctx.anonRow)
else:
let anonTableWrapper = ctx.createAnonTable(ctx.outer.computed)
anonTableWrapper.children[0].children.add(ctx.anonRow)
ctx.anonRow = nil
proc flushTable(ctx: var BlockBuilderContext) =
ctx.flushTableRow()
if ctx.anonTableWrapper != nil:
ctx.outer.children.add(ctx.anonTableWrapper)
ctx.anonTableWrapper = nil
proc flushInlineTableRow(ctx: var BlockBuilderContext) =
if ctx.inlineAnonRow != nil:
# There is no way an inline anonymous row could be a child of an inline
# table, since inline tables still act like blocks inside.
let anonTableWrapper = ctx.createAnonTable(ctx.outer.computed)
anonTableWrapper.children[0].children.add(ctx.inlineAnonRow)
ctx.inlineAnonRow = nil
proc flushInlineTable(ctx: var BlockBuilderContext) =
ctx.flushInlineTableRow()
if ctx.inlineAnonTableWrapper != nil:
ctx.pushInline(InlineBox(
t: ibtBox,
computed: ctx.inlineAnonTableWrapper.computed.inheritProperties(),
box: ctx.inlineAnonTableWrapper
))
ctx.inlineAnonTableWrapper = nil
proc iflush(ctx: var BlockBuilderContext) =
ctx.inlineStackFragments.setLen(0)
proc flushInherit(ctx: var BlockBuilderContext) =
if ctx.parent != nil:
if not ctx.listItemReset:
ctx.parent.listItemCounter = ctx.listItemCounter
ctx.parent.quoteLevel = ctx.quoteLevel
proc flush(ctx: var BlockBuilderContext) =
ctx.flushInlineGroup()
ctx.flushTable()
ctx.flushInherit()
proc addInlineRoot(ctx: var BlockBuilderContext; box: InlineBox) =
if ctx.inline == nil:
ctx.inline = InlineBox(
t: ibtParent,
computed: ctx.lctx.myRootProperties,
children: @[box]
)
else:
ctx.inline.children.add(box)
proc reconstructInlineParents(ctx: var BlockBuilderContext) =
if ctx.inlineStackFragments.len == 0:
var parent = InlineBox(
t: ibtParent,
computed: ctx.inlineStack[0].computed,
node: ctx.inlineStack[0]
)
ctx.inlineStackFragments.add(parent)
ctx.addInlineRoot(parent)
for i in 1 ..< ctx.inlineStack.len:
let node = ctx.inlineStack[i]
let child = InlineBox(
t: ibtParent,
computed: node.computed,
node: node
)
parent.children.add(child)
ctx.inlineStackFragments.add(child)
parent = child
proc buildSomeBlock(ctx: var BlockBuilderContext; styledNode: StyledNode;
computed: CSSValues): BlockBox =
let box = BlockBox(computed: computed, node: styledNode)
var childCtx = initBlockBuilderContext(styledNode, box, ctx.lctx, addr ctx)
case computed{"display"}
of DisplayBlock, DisplayFlowRoot, DisplayInlineBlock: childCtx.buildBlock()
of DisplayFlex, DisplayInlineFlex: childCtx.buildFlex()
of DisplayTable, DisplayInlineTable: childCtx.buildTable()
else: discard
return box
# Note: these also pop
proc pushBlock(ctx: var BlockBuilderContext; styledNode: StyledNode;
computed: CSSValues) =
if (computed{"position"} == PositionAbsolute or
computed{"float"} != FloatNone) and
(ctx.inline != nil or ctx.inlineStack.len > 0):
ctx.pushInlineBlock(styledNode, computed)
else:
ctx.iflush()
ctx.flush()
let box = ctx.buildSomeBlock(styledNode, computed)
ctx.outer.children.add(box)
proc pushInline(ctx: var BlockBuilderContext; box: InlineBox) =
if ctx.inlineStack.len == 0:
ctx.addInlineRoot(box)
else:
ctx.reconstructInlineParents()
ctx.inlineStackFragments[^1].children.add(box)
proc pushInlineText(ctx: var BlockBuilderContext; computed: CSSValues;
parent, node: StyledNode) =
ctx.pushInline(InlineBox(
t: ibtText,
computed: computed,
node: parent,
text: node
))
proc pushInlineBlock(ctx: var BlockBuilderContext; styledNode: StyledNode;
computed: CSSValues) =
ctx.pushInline(InlineBox(
t: ibtBox,
computed: computed.inheritProperties(),
node: styledNode,
box: ctx.buildSomeBlock(styledNode, computed)
))
proc pushListItem(ctx: var BlockBuilderContext; styledNode: StyledNode;
computed: CSSValues) =
ctx.iflush()
ctx.flush()
inc ctx.listItemCounter
let marker = newMarkerBox(computed, ctx.listItemCounter)
let position = computed{"list-style-position"}
let content = BlockBox(computed: computed, node: styledNode)
var contentCtx = initBlockBuilderContext(styledNode, content, ctx.lctx,
addr ctx)
case position
of ListStylePositionOutside:
contentCtx.buildBlock()
content.computed = content.computed.copyProperties()
content.computed{"display"} = DisplayBlock
let markerComputed = marker.computed.copyProperties()
markerComputed{"display"} = DisplayBlock
let marker = BlockBox(
computed: marker.computed,
inline: marker
)
let wrapper = BlockBox(computed: computed, children: @[marker, content])
ctx.outer.children.add(wrapper)
of ListStylePositionInside:
contentCtx.pushInline(marker)
contentCtx.buildBlock()
ctx.outer.children.add(content)
proc pushTableRow(ctx: var BlockBuilderContext; styledNode: StyledNode;
computed: CSSValues) =
let child = ctx.buildTableRow(styledNode, computed)
if ctx.inlineStack.len == 0:
ctx.iflush()
ctx.flushInlineGroup()
ctx.flushTableRow()
else:
ctx.flushInlineTableRow()
if ctx.inlineStack.len == 0 and
ctx.outer.computed{"display"} in ProperTableRowParent:
ctx.outer.children.add(child)
else:
let anonTableWrapper = ctx.createAnonTable(ctx.outer.computed)
anonTableWrapper.children[0].children.add(child)
proc pushTableRowGroup(ctx: var BlockBuilderContext; styledNode: StyledNode;
computed: CSSValues) =
let child = ctx.buildTableRowGroup(styledNode, computed)
if ctx.inlineStack.len == 0:
ctx.iflush()
ctx.flushInlineGroup()
ctx.flushTableRow()
else:
ctx.flushInlineTableRow()
if ctx.inlineStack.len == 0 and
ctx.outer.computed{"display"} in {DisplayTable, DisplayInlineTable}:
ctx.outer.children.add(child)
else:
ctx.flushTableRow()
let anonTableWrapper = ctx.createAnonTable(ctx.outer.computed)
anonTableWrapper.children[0].children.add(child)
proc pushTableCell(ctx: var BlockBuilderContext; styledNode: StyledNode;
computed: CSSValues) =
let child = ctx.buildTableCell(styledNode, computed)
if ctx.inlineStack.len == 0 and
ctx.outer.computed{"display"} == DisplayTableRow:
ctx.iflush()
ctx.flushInlineGroup()
ctx.outer.children.add(child)
else:
let anonRow = ctx.createAnonRow()
anonRow.children.add(child)
proc pushTableCaption(ctx: var BlockBuilderContext; styledNode: StyledNode;
computed: CSSValues) =
ctx.iflush()
ctx.flushInlineGroup()
ctx.flushTableRow()
let child = ctx.buildTableCaption(styledNode, computed)
if ctx.outer.computed{"display"} in {DisplayTable, DisplayInlineTable}:
ctx.outer.children.add(child)
else:
let anonTableWrapper = ctx.createAnonTable(ctx.outer.computed)
# only add first caption
if anonTableWrapper.children.len == 1:
anonTableWrapper.children.add(child)
proc buildFromElem(ctx: var BlockBuilderContext; styledNode: StyledNode;
computed: CSSValues) =
case computed{"display"}
of DisplayBlock, DisplayFlowRoot, DisplayFlex, DisplayTable:
ctx.pushBlock(styledNode, computed)
of DisplayInlineBlock, DisplayInlineTable, DisplayInlineFlex:
ctx.pushInlineBlock(styledNode, computed)
of DisplayListItem:
ctx.pushListItem(styledNode, computed)
of DisplayInline:
ctx.buildInlineBoxes(styledNode, computed)
of DisplayTableRow:
ctx.pushTableRow(styledNode, computed)
of DisplayTableRowGroup, DisplayTableHeaderGroup, DisplayTableFooterGroup:
ctx.pushTableRowGroup(styledNode, computed)
of DisplayTableCell:
ctx.pushTableCell(styledNode, computed)
of DisplayTableCaption:
ctx.pushTableCaption(styledNode, computed)
of DisplayTableColumn: discard #TODO
of DisplayTableColumnGroup: discard #TODO
of DisplayNone: discard
of DisplayTableWrapper, DisplayInlineTableWrapper: assert false
proc buildReplacement(ctx: var BlockBuilderContext; child, parent: StyledNode;
computed: CSSValues) =
case child.content.t
of ContentNone: assert false # unreachable for `content'
of ContentOpenQuote:
let quotes = parent.computed{"quotes"}
var text: string = ""
if quotes.qs.len > 0:
text = quotes.qs[min(ctx.quoteLevel, quotes.qs.high)].s
elif quotes.auto:
text = quoteStart(ctx.quoteLevel)
else: return
let node = newStyledText(text)
ctx.pushInlineText(computed, parent, node)
inc ctx.quoteLevel
of ContentCloseQuote:
if ctx.quoteLevel > 0: dec ctx.quoteLevel
let quotes = parent.computed{"quotes"}
let s = if quotes.qs.len > 0:
quotes.qs[min(ctx.quoteLevel, quotes.qs.high)].e
elif quotes.auto:
quoteEnd(ctx.quoteLevel)
else:
return
let text = newStyledText(s)
ctx.pushInlineText(computed, parent, text)
of ContentNoOpenQuote:
inc ctx.quoteLevel
of ContentNoCloseQuote:
if ctx.quoteLevel > 0: dec ctx.quoteLevel
of ContentString:
let text = newStyledText(child.content.s)
ctx.pushInlineText(computed, parent, text)
of ContentImage:
if child.content.bmp != nil:
ctx.pushInline(InlineBox(
t: ibtBitmap,
computed: parent.computed,
node: parent,
bmp: child.content.bmp
))
else:
ctx.pushInlineText(computed, parent, ctx.lctx.imgText)
of ContentVideo:
ctx.pushInlineText(computed, parent, ctx.lctx.videoText)
of ContentAudio:
ctx.pushInlineText(computed, parent, ctx.lctx.audioText)
of ContentNewline:
ctx.pushInline(InlineBox(
t: ibtNewline,
computed: computed,
node: child
))
proc buildInlineBoxes(ctx: var BlockBuilderContext; styledNode: StyledNode;
computed: CSSValues) =
let parent = InlineBox(
t: ibtParent,
computed: computed,
splitType: {stSplitStart},
node: styledNode
)
if ctx.inlineStack.len == 0:
ctx.addInlineRoot(parent)
else:
ctx.reconstructInlineParents()
ctx.inlineStackFragments[^1].children.add(parent)
ctx.inlineStack.add(styledNode)
ctx.inlineStackFragments.add(parent)
for child in styledNode.children:
case child.t
of stElement:
ctx.buildFromElem(child, child.computed)
of stText:
ctx.flushInlineTable()
ctx.pushInlineText(computed, styledNode, child)
of stReplacement:
ctx.flushInlineTable()
ctx.buildReplacement(child, styledNode, computed)
ctx.reconstructInlineParents()
ctx.flushInlineTable()
let box = ctx.inlineStackFragments.pop()
box.splitType.incl(stSplitEnd)
ctx.inlineStack.setLen(ctx.inlineStack.high)
proc initBlockBuilderContext(styledNode: StyledNode; box: BlockBox;
lctx: LayoutContext; parent: ptr BlockBuilderContext): BlockBuilderContext =
assert box.computed{"display"} != DisplayInline
result = BlockBuilderContext(
styledNode: styledNode,
outer: box,
lctx: lctx,
parent: parent
)
if parent != nil:
result.listItemCounter = parent[].listItemCounter
result.quoteLevel = parent[].quoteLevel
for reset in styledNode.computed{"counter-reset"}:
if reset.name == "list-item":
result.listItemCounter = reset.num
result.listItemReset = true
proc buildInnerBlock(ctx: var BlockBuilderContext) =
let inlineComputed = ctx.outer.computed.inheritProperties()
for child in ctx.styledNode.children:
case child.t
of stElement:
ctx.buildFromElem(child, child.computed)
of stText:
if ctx.canBuildAnonInline(ctx.outer.computed, child.textData):
ctx.pushInlineText(inlineComputed, ctx.styledNode, child)
of stReplacement:
ctx.buildReplacement(child, ctx.styledNode, inlineComputed)
ctx.iflush()
proc buildBlock(ctx: var BlockBuilderContext) =
ctx.buildInnerBlock()
# Flush anonymous tables here, to avoid setting inline layout with tables.
ctx.flushTable()
ctx.flushInherit() # (flush here, because why not)
# Avoid unnecessary anonymous block boxes. This also helps set our layout to
# inline even if no inner anonymous block was built.
if ctx.outer.children.len == 0:
ctx.outer.inline = if ctx.inline != nil:
ctx.inline
else:
InlineBox(t: ibtParent, computed: ctx.lctx.myRootProperties)
ctx.inline = nil
ctx.flushInlineGroup()
proc buildInnerFlex(ctx: var BlockBuilderContext) =
let inlineComputed = ctx.outer.computed.inheritProperties()
for child in ctx.styledNode.children:
case child.t
of stElement:
let display = child.computed{"display"}.blockify()
let computed = if display != child.computed{"display"}:
let computed = child.computed.copyProperties()
computed{"display"} = display
computed
else:
child.computed
ctx.buildFromElem(child, computed)
of stText:
if ctx.canBuildAnonInline(ctx.outer.computed, child.textData):
ctx.pushInlineText(inlineComputed, ctx.styledNode, child)
of stReplacement:
ctx.buildReplacement(child, ctx.styledNode, inlineComputed)
ctx.iflush()
proc buildFlex(ctx: var BlockBuilderContext) =
ctx.buildInnerFlex()
# Flush anonymous tables here, to avoid setting inline layout with tables.
ctx.flushTable()
# (flush here, because why not)
ctx.flushInherit()
ctx.flushInlineGroup()
assert ctx.outer.inline == nil
const FlexReverse = {FlexDirectionRowReverse, FlexDirectionColumnReverse}
if ctx.outer.computed{"flex-direction"} in FlexReverse:
ctx.outer.children.reverse()
proc buildTableCell(parent: var BlockBuilderContext; styledNode: StyledNode;
computed: CSSValues): BlockBox =
let box = BlockBox(node: styledNode, computed: computed)
var ctx = initBlockBuilderContext(styledNode, box, parent.lctx, addr parent)
ctx.buildInnerBlock()
ctx.flush()
return box
proc buildTableRowChildWrappers(box: BlockBox) =
var wrapperVals: CSSValues = nil
for child in box.children:
if child.computed{"display"} != DisplayTableCell:
wrapperVals = box.computed.inheritProperties()
wrapperVals{"display"} = DisplayTableCell
break
if wrapperVals != nil:
# fixup row: put wrappers around runs of misparented children
var children = newSeqOfCap[BlockBox](box.children.len)
var wrapper: BlockBox = nil
for child in box.children:
if child.computed{"display"} != DisplayTableCell:
if wrapper == nil:
wrapper = BlockBox(computed: wrapperVals)
children.add(wrapper)
wrapper.children.add(child)
else:
wrapper = nil
children.add(child)
box.children = children
proc buildTableRow(parent: var BlockBuilderContext; styledNode: StyledNode;
computed: CSSValues): BlockBox =
let box = BlockBox(node: styledNode, computed: computed)
var ctx = initBlockBuilderContext(styledNode, box, parent.lctx, addr parent)
ctx.buildInnerBlock()
ctx.flush()
box.buildTableRowChildWrappers()
return box
proc buildTableRowGroupChildWrappers(box: BlockBox) =
var wrapperVals: CSSValues = nil
for child in box.children:
if child.computed{"display"} != DisplayTableRow:
wrapperVals = box.computed.inheritProperties()
wrapperVals{"display"} = DisplayTableRow
break
if wrapperVals != nil:
# fixup row group: put wrappers around runs of misparented children
var wrapper: BlockBox = nil
var children = newSeqOfCap[BlockBox](box.children.len)
for child in box.children:
if child.computed{"display"} != DisplayTableRow:
if wrapper == nil:
wrapper = BlockBox(computed: wrapperVals, children: @[child])
children.add(wrapper)
wrapper.children.add(child)
else:
if wrapper != nil:
wrapper.buildTableRowChildWrappers()
wrapper = nil
children.add(child)
if wrapper != nil:
wrapper.buildTableRowChildWrappers()
box.children = children
proc buildTableRowGroup(parent: var BlockBuilderContext; styledNode: StyledNode;
computed: CSSValues): BlockBox =
let box = BlockBox(node: styledNode, computed: computed)
var ctx = initBlockBuilderContext(styledNode, box, parent.lctx, addr parent)
ctx.buildInnerBlock()
ctx.flush()
box.buildTableRowGroupChildWrappers()
return box
proc buildTableCaption(parent: var BlockBuilderContext; styledNode: StyledNode;
computed: CSSValues): BlockBox =
let box = BlockBox(node: styledNode, computed: computed)
var ctx = initBlockBuilderContext(styledNode, box, parent.lctx, addr parent)
ctx.buildInnerBlock()
ctx.flush()
return box
proc buildTableChildWrappers(box: BlockBox; computed: CSSValues) =
let innerTable = BlockBox(computed: computed, node: box.node)
let wrapperVals = box.computed.inheritProperties()
wrapperVals{"display"} = DisplayTableRow
var caption: BlockBox = nil
var wrapper: BlockBox = nil
for child in box.children:
if child.computed{"display"} in ProperTableChild:
if wrapper != nil:
wrapper.buildTableRowChildWrappers()
wrapper = nil
innerTable.children.add(child)
elif child.computed{"display"} == DisplayTableCaption:
if caption == nil:
caption = child
else:
if wrapper == nil:
wrapper = BlockBox(computed: wrapperVals)
innerTable.children.add(wrapper)
wrapper.children.add(child)
if wrapper != nil:
wrapper.buildTableRowChildWrappers()
box.children = @[innerTable]
if caption != nil:
box.children.add(caption)
proc buildTable(ctx: var BlockBuilderContext) =
ctx.buildInnerBlock()
ctx.flush()
let (outerComputed, innerComputed) = ctx.outer.computed.splitTable()
ctx.outer.computed = outerComputed
outerComputed{"display"} = outerComputed{"display"}.toTableWrapper()
ctx.outer.buildTableChildWrappers(innerComputed)
proc layout*(root: StyledNode; attrsp: ptr WindowAttributes): BlockBox =
let space = availableSpace(
w = stretch(attrsp[].widthPx),
h = stretch(attrsp[].heightPx)
)
let lctx = LayoutContext(
attrsp: attrsp,
cellSize: size(w = attrsp.ppc, h = attrsp.ppl),
positioned: @[PositionedItem(), PositionedItem()],
myRootProperties: rootProperties(),
imgText: newStyledText("[img]"),
videoText: newStyledText("[video]"),
audioText: newStyledText("[audio]"),
luctx: LUContext()
)
let box = BlockBox(computed: root.computed, node: root)
var ctx = initBlockBuilderContext(root, box, lctx, nil)
ctx.buildBlock()
let sizes = lctx.resolveBlockSizes(space, box.computed)
# the bottom margin is unused.
lctx.layoutRootBlock(box, sizes.margin.topLeft, sizes)
var size = size(w = attrsp[].widthPx, h = attrsp[].heightPx)
# Last absolute layer.
lctx.popPositioned(size)
# Fixed containing block.
# The idea is to move fixed boxes to the real edges of the page,
# so that they do not overlap with other boxes *and* we don't have
# to move them on scroll. It's still not compatible with what desktop
# browsers do, but the alternative would completely break search (and
# slow down the renderer to a crawl.)
size.w = max(size.w, box.state.size.w)
size.h = max(size.h, box.state.size.h)
lctx.popPositioned(size)
return box
| |