import algorithm
import math
import options
import unicode
import css/stylednode
import css/values
import display/winattrs
import layout/box
import layout/layoutunit
import utils/twtstr
type
LayoutState = ref object
attrs: WindowAttributes
positioned: seq[AvailableSpace]
# min-content: box width is longest word's width
# max-content: box width is content width without wrapping
# stretch: box width is n px wide
# fit-content: also known as shrink-to-fit, box width is
# min(max-content, stretch(availableWidth))
# in other words, as wide as needed, but wrap if wider than allowed
# (note: I write width here, but it can apply for any constraint)
SizeConstraintType = enum
STRETCH, FIT_CONTENT, MIN_CONTENT, MAX_CONTENT
SizeConstraint = object
t: SizeConstraintType
u: LayoutUnit
AvailableSpace = object
w: SizeConstraint
h: SizeConstraint
ResolvedSizes = object
margin: RelativeRect
padding: RelativeRect
space: AvailableSpace
minWidth: LayoutUnit
maxWidth: LayoutUnit
minHeight: LayoutUnit
maxHeight: LayoutUnit
func maxContent(): SizeConstraint =
return SizeConstraint(t: MAX_CONTENT)
func stretch(u: LayoutUnit): SizeConstraint =
return SizeConstraint(t: STRETCH, u: u)
func fitContent(u: LayoutUnit): SizeConstraint =
return SizeConstraint(t: FIT_CONTENT, u: u)
type
BoxBuilder = ref object of RootObj
children: seq[BoxBuilder]
computed: CSSComputedValues
node: StyledNode
InlineBoxBuilder = ref object of BoxBuilder
text: seq[string]
newline: bool
splitstart: bool
splitend: bool
BlockBoxBuilder = ref object of BoxBuilder
inlinelayout: bool
MarkerBoxBuilder = ref object of InlineBoxBuilder
ListItemBoxBuilder = ref object of BoxBuilder
marker: MarkerBoxBuilder
content: BlockBoxBuilder
TableRowGroupBoxBuilder = ref object of BlockBoxBuilder
TableRowBoxBuilder = ref object of BlockBoxBuilder
TableCellBoxBuilder = ref object of BlockBoxBuilder
TableBoxBuilder = ref object of BlockBoxBuilder
rowgroups: seq[TableRowGroupBoxBuilder]
TableCaptionBoxBuilder = ref object of BlockBoxBuilder
#TODO ?
func stretch(sc: SizeConstraint): SizeConstraint =
case sc.t
of MIN_CONTENT, MAX_CONTENT:
return sc
of STRETCH, FIT_CONTENT:
return SizeConstraint(t: STRETCH, u: sc.u)
func fitContent(sc: SizeConstraint): SizeConstraint =
case sc.t
of MIN_CONTENT, MAX_CONTENT:
return SizeConstraint(t: sc.t)
of STRETCH, FIT_CONTENT:
return SizeConstraint(t: FIT_CONTENT, u: sc.u)
func isDefinite(sc: SizeConstraint): bool =
return sc.t in {STRETCH, FIT_CONTENT}
# Layout (2nd pass)
func px(l: CSSLength, lctx: LayoutState, p: LayoutUnit = 0):
LayoutUnit {.inline.} =
return px(l, lctx.attrs, p)
func px(l: CSSLength, lctx: LayoutState, p: Option[LayoutUnit]):
Option[LayoutUnit] {.inline.} =
if l.unit == UNIT_PERC and p.isNone:
return none(LayoutUnit)
return some(px(l, lctx.attrs, p.get(0)))
func canpx(l: CSSLength, sc: SizeConstraint): bool =
return l.unit != UNIT_PERC or sc.isDefinite()
func canpx(l: CSSLength, p: Option[LayoutUnit]): bool =
return l.unit != UNIT_PERC or p.isSome
# Note: for margins only
# For percentages, use 0 for indefinite, and containing box's size for
# definite.
func px(l: CSSLength, lctx: LayoutState, p: SizeConstraint): LayoutUnit =
if l.unit == UNIT_PERC:
case p.t
of MIN_CONTENT, MAX_CONTENT:
return 0
of STRETCH, FIT_CONTENT:
return l.px(lctx, p.u)
return px(l, lctx.attrs, 0)
func applySizeConstraint(u: LayoutUnit, availableSize: SizeConstraint):
LayoutUnit =
case availableSize.t
of STRETCH:
return availableSize.u
of MIN_CONTENT, MAX_CONTENT:
# must be calculated elsewhere...
return u
of FIT_CONTENT:
return min(u, availableSize.u)
type
BlockContext = object
lctx: LayoutState
marginTodo: Strut
# We use a linked list to set the correct BFC offset and relative offset
# for every block with an unresolved y offset on margin resolution.
# marginTarget is a pointer to the last un-resolved ancestor.
# ancestorsHead is a pointer to the last element of the ancestor list
# (which may in fact be a pointer to the BPS of a previous sibling's
# child).
# parentBps is a pointer to the currently layouted parent block's BPS.
marginTarget: BlockPositionState
ancestorsHead: BlockPositionState
parentBps: BlockPositionState
exclusions: seq[Exclusion]
unpositionedFloats: seq[UnpositionedFloat]
maxFloatHeight: LayoutUnit
clearOffset: LayoutUnit
UnpositionedFloat = object
parentBps: BlockPositionState
space: AvailableSpace
box: BlockBox
BlockPositionState = ref object
next: BlockPositionState
box: BlockBox
offset: Offset # offset relative to the block formatting context
resolved: bool # has the position been resolved yet?
Exclusion = object
offset: Offset
size: Size
t: CSSFloat
Strut = object
pos: LayoutUnit
neg: LayoutUnit
type
LineBoxState = object
atomstates: seq[InlineAtomState]
baseline: LayoutUnit
lineheight: LayoutUnit
paddingTop: LayoutUnit
paddingBottom: LayoutUnit
line: LineBox
availableWidth: LayoutUnit
hasExclusion: bool
charwidth: int
# Set at the end of layoutText. It helps determine the beginning of the
# next inline fragment.
widthAfterWhitespace: LayoutUnit
InlineAtomState = object
vertalign: CSSVerticalAlign
baseline: LayoutUnit
marginTop: LayoutUnit
marginBottom: LayoutUnit
InlineContext = object
root: RootInlineFragment
bctx: ptr BlockContext
bfcOffset: Offset
currentLine: LineBoxState
hasshy: bool
lctx: LayoutState
lines: seq[LineBox]
minwidth: LayoutUnit
space: AvailableSpace
whitespacenum: int
whitespaceFragment: InlineFragment
word: InlineAtom
wordstate: InlineAtomState
wrappos: int # position of last wrapping opportunity, or -1
firstTextFragment: InlineFragment
lastTextFragment: InlineFragment
InlineState = object
computed: CSSComputedValues
node: StyledNode
fragment: InlineFragment
firstLine: bool
startOffsetTop: Offset
func whitespacepre(computed: CSSComputedValues): bool =
computed{"white-space"} in {WHITESPACE_PRE, WHITESPACE_PRE_LINE, WHITESPACE_PRE_WRAP}
func nowrap(computed: CSSComputedValues): bool =
computed{"white-space"} in {WHITESPACE_NOWRAP, WHITESPACE_PRE}
func cellwidth(lctx: LayoutState): LayoutUnit =
lctx.attrs.ppc
func cellwidth(ictx: InlineContext): LayoutUnit =
ictx.lctx.cellwidth
func cellheight(lctx: LayoutState): LayoutUnit =
lctx.attrs.ppl
func cellheight(ictx: InlineContext): LayoutUnit =
ictx.lctx.attrs.ppl
template atoms(state: LineBoxState): untyped =
state.line.atoms
template size(state: LineBoxState): untyped =
state.line.size
template offsety(state: var LineBoxState): untyped =
state.line.offsety
func size(ictx: var InlineContext): var Size =
ictx.root.size
# Whitespace between words
func computeShift(ictx: InlineContext, state: InlineState): LayoutUnit =
if ictx.whitespacenum == 0:
return 0
if not state.computed.whitespacepre:
if ictx.currentLine.atoms.len == 0 or
ictx.currentLine.atoms[^1].t == INLINE_SPACING:
return 0
let spacing = state.computed{"word-spacing"}
if spacing.auto:
return ictx.cellwidth * ictx.whitespacenum
return spacing.px(ictx.lctx) * ictx.whitespacenum
proc applyLineHeight(ictx: InlineContext, state: var LineBoxState,
computed: CSSComputedValues) =
let lctx = ictx.lctx
#TODO this should be computed during cascading.
let lineheight = if computed{"line-height"}.auto: # ergo normal
lctx.cellheight
else:
# Percentage: refers to the font size of the element itself.
computed{"line-height"}.px(lctx, lctx.cellheight)
let paddingTop = computed{"padding-top"}.px(lctx, ictx.space.w)
let paddingBottom = computed{"padding-bottom"}.px(lctx, ictx.space.w)
state.paddingTop = max(paddingTop, state.paddingTop)
state.paddingBottom = max(paddingBottom, state.paddingBottom)
state.lineheight = max(lineheight, state.lineheight)
proc newWord(ictx: var InlineContext, state: var InlineState) =
ictx.word = InlineAtom(
t: INLINE_WORD,
size: Size(h: ictx.cellheight)
)
ictx.wordstate = InlineAtomState(
vertalign: state.computed{"vertical-align"},
baseline: ictx.cellheight
)
ictx.wrappos = -1
ictx.hasshy = false
proc horizontalAlignLine(ictx: var InlineContext, state: InlineState,
line: var LineBox, last = false) =
let width = case ictx.space.w.t
of MIN_CONTENT, MAX_CONTENT:
ictx.size.w
of FIT_CONTENT:
min(ictx.size.w, ictx.space.w.u)
of STRETCH:
max(ictx.size.w, ictx.space.w.u)
# we don't support directions for now so left = start and right = end
case state.computed{"text-align"}
of TEXT_ALIGN_START, TEXT_ALIGN_LEFT, TEXT_ALIGN_CHA_LEFT:
discard
of TEXT_ALIGN_END, TEXT_ALIGN_RIGHT, TEXT_ALIGN_CHA_RIGHT:
# move everything
let x = max(width, line.size.w) - line.size.w
for atom in line.atoms.mitems:
atom.offset.x += x
ictx.size.w = max(atom.offset.x + atom.size.w, ictx.size.w)
of TEXT_ALIGN_CENTER, TEXT_ALIGN_CHA_CENTER:
# NOTE if we need line x offsets, use:
#let width = width - line.offset.x
let x = max((max(width, line.size.w)) div 2 - line.size.w div 2, 0)
for atom in line.atoms.mitems:
atom.offset.x += x
ictx.size.w = max(atom.offset.x + atom.size.w, ictx.size.w)
of TEXT_ALIGN_JUSTIFY:
if not state.computed.whitespacepre and not last:
var sumwidth: LayoutUnit = 0
var spaces = 0
for atom in line.atoms.mitems:
if atom.t == INLINE_SPACING:
discard
else:
inc spaces
sumwidth += atom.size.w
dec spaces
if spaces > 0:
let spacingwidth = (width - sumwidth) div spaces
line.size.w = 0
for atom in line.atoms.mitems:
atom.offset.x = line.size.w
if atom.t == INLINE_SPACING:
atom.size.w = spacingwidth
line.size.w += atom.size.w
# If necessary, update ictx's width.
ictx.size.w = max(line.size.w, ictx.size.w)
# Align atoms (inline boxes, text, etc.) vertically (i.e. along the inline
# axis) inside the line.
proc verticalAlignLine(ictx: var InlineContext) =
# Start with line-height as the baseline and line height.
let lineheight = ictx.currentLine.lineheight
ictx.currentLine.size.h = lineheight
var baseline = lineheight
# Calculate the line's baseline based on atoms' baseline.
# Also, collect the maximum vertical margins of inline blocks.
var marginTop: LayoutUnit = 0
var bottomEdge = baseline
for i in 0 ..< ictx.currentLine.atoms.len:
let atom = ictx.currentLine.atoms[i]
let iastate = ictx.currentLine.atomstates[i]
case iastate.vertalign.keyword
of VERTICAL_ALIGN_BASELINE:
let len = iastate.vertalign.length.px(ictx.lctx, lineheight)
baseline = max(baseline, iastate.baseline + len)
of VERTICAL_ALIGN_TOP, VERTICAL_ALIGN_BOTTOM:
baseline = max(baseline, atom.size.h)
of VERTICAL_ALIGN_MIDDLE:
baseline = max(baseline, atom.size.h div 2)
else:
baseline = max(baseline, iastate.baseline)
# Resize the line's height based on atoms' height and baseline.
# The line height should be at least as high as the highest baseline used by
# an atom plus that atom's height.
for i in 0 ..< ictx.currentLine.atoms.len:
let atom = ictx.currentLine.atoms[i]
let iastate = ictx.currentLine.atomstates[i]
# In all cases, the line's height must at least equal the atom's height.
# (Where the atom is actually placed is irrelevant here.)
ictx.currentLine.size.h = max(ictx.currentLine.size.h, atom.size.h)
case iastate.vertalign.keyword
of VERTICAL_ALIGN_BASELINE:
# Line height must be at least as high as
# (line baseline) - (atom baseline) + (atom height) + (extra height).
let len = iastate.vertalign.length.px(ictx.lctx, lineheight)
ictx.currentLine.size.h = max(baseline - iastate.baseline +
atom.size.h + len, ictx.currentLine.size.h)
of VERTICAL_ALIGN_MIDDLE:
# Line height must be at least
# (line baseline) + (atom height / 2).
ictx.currentLine.size.h = max(baseline + atom.size.h div 2,
ictx.currentLine.size.h)
of VERTICAL_ALIGN_TOP, VERTICAL_ALIGN_BOTTOM:
# Line height must be at least atom height (already ensured above.)
discard
else:
# See baseline (with len = 0).
ictx.currentLine.size.h = max(baseline - iastate.baseline +
atom.size.h, ictx.currentLine.size.h)
# Now we can calculate the actual position of atoms inside the line.
for i in 0 ..< ictx.currentLine.atoms.len:
let iastate = ictx.currentLine.atomstates[i]
let atom = addr ictx.currentLine.atoms[i]
case iastate.vertalign.keyword
of VERTICAL_ALIGN_BASELINE:
# Atom is placed at (line baseline) - (atom baseline) - len
let len = iastate.vertalign.length.px(ictx.lctx, lineheight)
atom.offset.y = baseline - iastate.baseline - len
of VERTICAL_ALIGN_MIDDLE:
# Atom is placed at (line baseline) - ((atom height) / 2)
atom.offset.y = baseline - atom.size.h div 2
of VERTICAL_ALIGN_TOP:
# Atom is placed at the top of the line.
atom.offset.y = 0
of VERTICAL_ALIGN_BOTTOM:
# Atom is placed at the bottom of the line.
atom.offset.y = ictx.currentLine.size.h - atom.size.h
else:
# See baseline (with len = 0).
atom.offset.y = baseline - iastate.baseline
# Find the best top margin and bottom edge of all atoms.
# In fact, we are looking for the lowest top edge and the highest bottom
# edge of the line, so we have to do this after we know where the atoms
# will be placed.
marginTop = max(iastate.marginTop - atom.offset.y, marginTop)
bottomEdge = max(atom.offset.y + atom.size.h + iastate.marginBottom,
bottomEdge)
# Finally, offset all atoms' y position by the largest top margin and the
# line box's top padding.
for atom in ictx.currentLine.atoms:
atom.offset.y += marginTop
atom.offset.y += ictx.currentLine.paddingTop
# Set the line height to new top edge + old bottom edge, and set the
# baseline.
ictx.currentLine.size.h = max(bottomEdge + marginTop, lineheight)
ictx.currentLine.baseline = baseline
# Add padding.
ictx.currentLine.size.h += ictx.currentLine.paddingTop
ictx.currentLine.size.h += ictx.currentLine.paddingBottom
ictx.currentLine.baseline += ictx.currentLine.paddingTop
proc addSpacing(ictx: var InlineContext, width, height: LayoutUnit,
hang = false) =
let spacing = InlineAtom(
t: INLINE_SPACING,
size: Size(
w: width,
h: height
),
offset: Offset(x: ictx.currentLine.size.w)
)
let iastate = InlineAtomState(
baseline: height
#TODO vertalign?
)
if not hang:
# In some cases, whitespace may "hang" at the end of the line. This means
# it is written, but is not actually counted in the box's width.
ictx.currentLine.size.w += width
ictx.currentLine.atomstates.add(iastate)
ictx.currentLine.atoms.add(spacing)
ictx.whitespaceFragment.atoms.add(spacing)
proc flushWhitespace(ictx: var InlineContext, state: InlineState,
hang = false) =
let shift = ictx.computeShift(state)
ictx.currentLine.charwidth += ictx.whitespacenum
ictx.whitespacenum = 0
if shift > 0:
ictx.addSpacing(shift, ictx.cellheight, hang)
# Prepare the next line's initial width and available width.
# (If space on the left is excluded by floats, set the initial width to
# the end of that space. If space on the right is excluded, set the available
# width to that space.)
proc initLine(ictx: var InlineContext) =
ictx.currentLine.availableWidth = ictx.space.w.u
let bctx = ictx.bctx
#TODO what if maxContent/minContent?
if bctx.exclusions.len != 0:
let bfcOffset = ictx.bfcOffset
let y = ictx.currentLine.line.offsety + bfcOffset.y
var left = bfcOffset.x
var right = bfcOffset.x + ictx.currentLine.availableWidth
for ex in bctx.exclusions:
if ex.offset.y <= y and y < ex.offset.y + ex.size.h:
ictx.currentLine.hasExclusion = true
if ex.t == FLOAT_LEFT:
left = ex.offset.x + ex.size.w
else:
right = ex.offset.x
ictx.currentLine.line.size.w = left - bfcOffset.x
ictx.currentLine.availableWidth = right - bfcOffset.x
proc finishLine(ictx: var InlineContext, state: var InlineState, wrap: bool,
force = false) =
if ictx.currentLine.atoms.len != 0 or force:
let whitespace = state.computed{"white-space"}
if whitespace == WHITESPACE_PRE:
ictx.flushWhitespace(state)
elif whitespace == WHITESPACE_PRE_WRAP:
ictx.flushWhitespace(state, hang = true)
else:
ictx.whitespacenum = 0
ictx.verticalAlignLine()
# add line to ictx
let y = ictx.currentLine.offsety
# * set first baseline if this is the first line box
# * always set last baseline (so the baseline of the last line box remains)
if ictx.lines.len == 0:
ictx.root.firstBaseline = y + ictx.currentLine.baseline
ictx.root.baseline = y + ictx.currentLine.baseline
ictx.size.h += ictx.currentLine.size.h
let lineWidth = if wrap:
ictx.currentLine.availableWidth
else:
ictx.currentLine.size.w
if state.firstLine:
#TODO padding top
state.fragment.startOffset = Offset(
x: state.startOffsetTop.x,
y: y + ictx.currentLine.size.h
)
state.fragment.size.w = lineWidth - state.startOffsetTop.x
state.firstLine = false
else:
state.fragment.size.w = max(lineWidth, state.fragment.size.w)
ictx.size.w = max(ictx.size.w, lineWidth)
ictx.lines.add(ictx.currentLine.line)
ictx.currentLine = LineBoxState(
line: LineBox(offsety: y + ictx.currentLine.size.h)
)
ictx.initLine()
proc finish(ictx: var InlineContext, state: var InlineState) =
ictx.finishLine(state, wrap = false)
if ictx.lines.len > 0:
for i in 0 ..< ictx.lines.len - 1:
ictx.horizontalAlignLine(state, ictx.lines[i], last = false)
ictx.horizontalAlignLine(state, ictx.lines[^1], last = true)
func minwidth(atom: InlineAtom): LayoutUnit =
if atom.t == INLINE_BLOCK:
return atom.innerbox.xminwidth
return atom.size.w
func shouldWrap(ictx: InlineContext, w: LayoutUnit,
pcomputed: CSSComputedValues): bool =
if pcomputed != nil and pcomputed.nowrap:
return false
if ictx.space.w.t == MAX_CONTENT:
return false # no wrap with max-content
if ictx.space.w.t == MIN_CONTENT:
return true # always wrap with min-content
return ictx.currentLine.size.w + w > ictx.currentLine.availableWidth
func shouldWrap2(ictx: InlineContext, w: LayoutUnit): bool =
if not ictx.currentLine.hasExclusion:
return false
return ictx.currentLine.size.w + w > ictx.currentLine.availableWidth
# Start a new line, even if the previous one is empty
proc flushLine(ictx: var InlineContext, state: var InlineState) =
ictx.applyLineHeight(ictx.currentLine, state.computed)
ictx.finishLine(state, wrap = false, force = true)
# Add an inline atom atom, with state iastate.
# Returns true on newline.
proc addAtom(ictx: var InlineContext, state: var InlineState,
iastate: InlineAtomState, atom: InlineAtom): bool =
result = false
var shift = ictx.computeShift(state)
ictx.whitespacenum = 0
# Line wrapping
if ictx.shouldWrap(atom.size.w + shift, state.computed):
ictx.finishLine(state, wrap = true, force = false)
result = true
# Recompute on newline
shift = ictx.computeShift(state)
# For floats: flush lines until we can place the atom.
#TODO this is inefficient
while ictx.shouldWrap2(atom.size.w + shift):
ictx.flushLine(state)
# Recompute on newline
shift = ictx.computeShift(state)
if atom.size.w > 0 and atom.size.h > 0:
if shift > 0:
ictx.addSpacing(shift, ictx.cellheight)
ictx.minwidth = max(ictx.minwidth, atom.minwidth)
ictx.applyLineHeight(ictx.currentLine, state.computed)
if atom.t == INLINE_WORD:
ictx.currentLine.charwidth = 0
ictx.currentLine.atoms.add(atom)
state.fragment.atoms.add(atom)
ictx.currentLine.atomstates.add(iastate)
ictx.currentLine.atoms[^1].offset.x += ictx.currentLine.size.w
ictx.currentLine.size.w += atom.size.w
proc addWord(ictx: var InlineContext, state: var InlineState): bool =
result = false
if ictx.word.str != "":
ictx.word.str.mnormalize() #TODO this may break on EOL.
result = ictx.addAtom(state, ictx.wordstate, ictx.word)
ictx.newWord(state)
proc addWordEOL(ictx: var InlineContext, state: var InlineState): bool =
result = false
if ictx.word.str != "":
if ictx.wrappos != -1:
let leftstr = ictx.word.str.substr(ictx.wrappos)
ictx.word.str.setLen(ictx.wrappos)
if ictx.hasshy:
const shy = $Rune(0xAD) # soft hyphen
ictx.word.str &= shy
ictx.hasshy = false
result = ictx.addWord(state)
ictx.word.str = leftstr
ictx.word.size.w = leftstr.width() * ictx.cellwidth
else:
result = ictx.addWord(state)
proc checkWrap(ictx: var InlineContext, state: var InlineState, r: Rune) =
if state.computed.nowrap:
return
let shift = ictx.computeShift(state)
let rw = r.width()
case state.computed{"word-break"}
of WORD_BREAK_NORMAL:
if rw == 2 or ictx.wrappos != -1: # break on cjk and wrap opportunities
let plusWidth = ictx.word.size.w + shift + rw * ictx.cellwidth
if ictx.shouldWrap(plusWidth, nil):
if not ictx.addWordEOL(state): # no line wrapping occured in addAtom
ictx.finishLine(state, wrap = true)
ictx.whitespacenum = 0
of WORD_BREAK_BREAK_ALL:
let plusWidth = ictx.word.size.w + shift + rw * ictx.cellwidth
if ictx.shouldWrap(plusWidth, nil):
if not ictx.addWordEOL(state): # no line wrapping occured in addAtom
ictx.finishLine(state, wrap = true)
ictx.whitespacenum = 0
of WORD_BREAK_KEEP_ALL:
let plusWidth = ictx.word.size.w + shift + rw * ictx.cellwidth
if ictx.shouldWrap(plusWidth, nil):
ictx.finishLine(state, wrap = true)
ictx.whitespacenum = 0
proc processWhitespace(ictx: var InlineContext, state: var InlineState,
c: char) =
discard ictx.addWord(state)
case state.computed{"white-space"}
of WHITESPACE_NORMAL, WHITESPACE_NOWRAP:
if ictx.whitespacenum < 1:
ictx.whitespacenum = 1
ictx.whitespaceFragment = state.fragment
of WHITESPACE_PRE_LINE:
if c == '\n':
ictx.flushLine(state)
elif ictx.whitespacenum < 1:
ictx.whitespacenum = 1
ictx.whitespaceFragment = state.fragment
of WHITESPACE_PRE, WHITESPACE_PRE_WRAP:
#TODO whitespace type should be preserved here. (it isn't, because
# it would break tabs in the current buffer model.)
if c == '\n':
ictx.flushLine(state)
elif c == '\t':
let prev = ictx.currentLine.charwidth
ictx.currentLine.charwidth = ((ictx.currentLine.charwidth +
ictx.whitespacenum) div 8 + 1) * 8 - ictx.whitespacenum
ictx.whitespacenum += ictx.currentLine.charwidth - prev
ictx.whitespaceFragment = state.fragment
else:
inc ictx.whitespacenum
ictx.whitespaceFragment = state.fragment
func newInlineContext(bctx: var BlockContext, space: AvailableSpace,
bfcOffset: Offset, root: RootInlineFragment): InlineContext =
var ictx = InlineContext(
currentLine: LineBoxState(
line: LineBox()
),
bctx: addr bctx,
lctx: bctx.lctx,
bfcOffset: bfcOffset,
space: space,
root: root
)
ictx.initLine()
return ictx
proc layoutText(ictx: var InlineContext, state: var InlineState, str: string) =
ictx.flushWhitespace(state)
ictx.newWord(state)
var i = 0
while i < str.len:
let c = str[i]
if c in Ascii:
if c in AsciiWhitespace:
ictx.processWhitespace(state, c)
else:
let r = Rune(c)
ictx.checkWrap(state, r)
ictx.word.str &= c
let w = r.width()
ictx.word.size.w += w * ictx.cellwidth
ictx.currentLine.charwidth += w
if c == '-': # ascii dash
ictx.wrappos = ictx.word.str.len
ictx.hasshy = false
inc i
else:
var r: Rune
fastRuneAt(str, i, r)
ictx.checkWrap(state, r)
if r == Rune(0xAD): # soft hyphen
ictx.wrappos = ictx.word.str.len
ictx.hasshy = true
else:
ictx.word.str &= r
let w = r.width()
ictx.word.size.w += w * ictx.cellwidth
ictx.currentLine.charwidth += w
discard ictx.addWord(state)
let shift = ictx.computeShift(state)
ictx.currentLine.widthAfterWhitespace = ictx.currentLine.size.w + shift
func spx(l: CSSLength, lctx: LayoutState, p: SizeConstraint,
computed: CSSComputedValues, padding: LayoutUnit): LayoutUnit =
let u = l.px(lctx, p)
if computed{"box-sizing"} == BOX_SIZING_BORDER_BOX:
return max(u - padding, 0)
return max(u, 0)
func spx(l: CSSLength, lctx: LayoutState, p: Option[LayoutUnit],
computed: CSSComputedValues, padding: LayoutUnit): Option[LayoutUnit] =
let u = l.px(lctx, p)
if u.isSome:
let u = u.get
if computed{"box-sizing"} == BOX_SIZING_BORDER_BOX:
return some(max(u - padding, 0))
return some(max(u, 0))
return u
proc resolveContentWidth(sizes: var ResolvedSizes, widthpx: LayoutUnit,
containingWidth: SizeConstraint, computed: CSSComputedValues,
isauto = false) =
if not sizes.space.w.isDefinite():
# width is indefinite, so no conflicts can be resolved here.
return
let total = widthpx + sizes.margin.left + sizes.margin.right +
sizes.padding.left + sizes.padding.right
let underflow = containingWidth.u - total
if isauto or sizes.space.w.t == FIT_CONTENT:
if underflow >= 0:
sizes.space.w = SizeConstraint(t: sizes.space.w.t, u: underflow)
else:
sizes.margin.right += underflow
elif underflow > 0:
if not computed{"margin-left"}.auto and not computed{"margin-right"}.auto:
sizes.margin.right += underflow
elif not computed{"margin-left"}.auto and computed{"margin-right"}.auto:
sizes.margin.right = underflow
elif computed{"margin-left"}.auto and not computed{"margin-right"}.auto:
sizes.margin.left = underflow
else:
sizes.margin.left = underflow div 2
sizes.margin.right = underflow div 2
proc resolveMargins(availableWidth: SizeConstraint, lctx: LayoutState,
computed: CSSComputedValues): RelativeRect =
# Note: we use availableWidth for percentage resolution intentionally.
return RelativeRect(
top: computed{"margin-top"}.px(lctx, availableWidth),
bottom: computed{"margin-bottom"}.px(lctx, availableWidth),
left: computed{"margin-left"}.px(lctx, availableWidth),
right: computed{"margin-right"}.px(lctx, availableWidth)
)
proc resolvePadding(availableWidth: SizeConstraint, lctx: LayoutState,
computed: CSSComputedValues): RelativeRect =
# Note: we use availableWidth for percentage resolution intentionally.
return RelativeRect(
top: computed{"padding-top"}.px(lctx, availableWidth),
bottom: computed{"padding-bottom"}.px(lctx, availableWidth),
left: computed{"padding-left"}.px(lctx, availableWidth),
right: computed{"padding-right"}.px(lctx, availableWidth)
)
proc resolveBlockWidth(sizes: var ResolvedSizes,
containingWidth: SizeConstraint, computed: CSSComputedValues,
lctx: LayoutState) =
let width = computed{"width"}
let padding = sizes.padding.left + sizes.padding.right
var widthpx: LayoutUnit = 0
if not width.auto and width.canpx(containingWidth):
widthpx = width.spx(lctx, containingWidth, computed, padding)
sizes.space.w = stretch(widthpx)
sizes.resolveContentWidth(widthpx, containingWidth, computed, width.auto)
if not computed{"max-width"}.auto:
let maxWidth = computed{"max-width"}.spx(lctx, containingWidth, computed,
padding)
sizes.maxWidth = maxWidth
if sizes.space.w.t in {STRETCH, FIT_CONTENT} and
maxWidth < sizes.space.w.u or sizes.space.w.t == MAX_CONTENT:
sizes.space.w = stretch(maxWidth) #TODO is stretch ok here?
if sizes.space.w.t == STRETCH:
# available width would stretch over max-width
sizes.space.w = stretch(maxWidth)
else: # FIT_CONTENT
# available width could be higher than max-width (but not necessarily)
sizes.space.w = fitContent(maxWidth)
sizes.resolveContentWidth(maxWidth, containingWidth, computed)
if not computed{"min-width"}.auto:
let minWidth = computed{"min-width"}.spx(lctx, containingWidth, computed,
padding)
sizes.minWidth = minWidth
if sizes.space.w.t in {STRETCH, FIT_CONTENT} and
minWidth > sizes.space.w.u or sizes.space.w.t == MIN_CONTENT:
# two cases:
# * available width is stretched under min-width. in this case,
# stretch to min-width instead.
# * available width is fit under min-width. in this case, stretch to
# min-width as well (as we must satisfy min-width >= width).
sizes.space.w = stretch(minWidth)
sizes.resolveContentWidth(minWidth, containingWidth, computed)
proc resolveBlockHeight(sizes: var ResolvedSizes,
containingHeight: SizeConstraint, percHeight: Option[LayoutUnit],
computed: CSSComputedValues, lctx: LayoutState) =
let height = computed{"height"}
let padding = sizes.padding.top + sizes.padding.bottom
var heightpx: LayoutUnit = 0
if not height.auto and height.canpx(percHeight):
heightpx = height.spx(lctx, percHeight, computed, padding).get
sizes.space.h = stretch(heightpx)
if not computed{"max-height"}.auto:
let maxHeight = computed{"max-height"}.spx(lctx, percHeight, computed,
padding)
sizes.maxHeight = maxHeight.get(high(LayoutUnit))
if maxHeight.isSome:
let maxHeight = maxHeight.get
if sizes.space.h.t in {STRETCH, FIT_CONTENT} and
maxHeight < sizes.space.h.u or sizes.space.h.t == MAX_CONTENT:
# same reasoning as for width.
if sizes.space.h.t == STRETCH:
sizes.space.h = stretch(maxHeight)
else: # FIT_CONTENT
sizes.space.h = fitContent(maxHeight)
if not computed{"min-height"}.auto:
let minHeight = computed{"min-height"}.spx(lctx, percHeight, computed,
padding)
sizes.minHeight = minHeight.get(0)
if minHeight.isSome:
let minHeight = minHeight.get
if sizes.space.h.t in {STRETCH, FIT_CONTENT} and
minHeight > sizes.space.h.u or sizes.space.h.t == MIN_CONTENT:
# same reasoning as for width.
sizes.space.h = stretch(minHeight)
proc resolveAbsoluteWidth(sizes: var ResolvedSizes,
containingWidth: SizeConstraint, computed: CSSComputedValues,
lctx: LayoutState) =
let left = computed{"left"}
let right = computed{"right"}
let width = computed{"width"}
if width.auto:
if not left.auto and not right.auto:
# width is auto and left & right are not auto.
# Solve for width.
if containingWidth.isDefinite:
let leftpx = left.px(lctx, containingWidth)
let rightpx = right.px(lctx, containingWidth)
let u = containingWidth.u - leftpx - rightpx -
sizes.margin.left - sizes.margin.right -
sizes.padding.left - sizes.padding.right
sizes.space.w = stretch(max(u, 0))
else:
sizes.space.w = containingWidth
else:
# Return shrink to fit and solve for left/right.
# Note that we do not know content width yet, so it is impossible to
# solve left/right yet.
sizes.space.w = fitContent(containingWidth)
else:
let padding = sizes.padding.left + sizes.padding.right
let widthpx = width.spx(lctx, containingWidth, computed, padding)
# We could solve for left/right here, as available width is known.
# Nevertheless, it is only needed for positioning, so we do not solve
# them yet.
sizes.space.w = stretch(widthpx)
proc resolveAbsoluteHeight(sizes: var ResolvedSizes,
containingHeight: SizeConstraint, computed: CSSComputedValues,
lctx: LayoutState) =
#TODO this might be incorrect because of percHeight?
let top = computed{"top"}
let bottom = computed{"bottom"}
let height = computed{"height"}
if height.auto:
if not top.auto and not bottom.auto:
# height is auto and top & bottom are not auto.
# Solve for height.
if containingHeight.isDefinite:
let toppx = top.px(lctx, containingHeight)
let bottompx = bottom.px(lctx, containingHeight)
#TODO I assume border collapsing does not matter here?
let u = containingHeight.u - toppx - bottompx -
sizes.margin.top - sizes.margin.bottom -
sizes.padding.top - sizes.padding.bottom
sizes.space.h = stretch(max(u, 0))
else:
sizes.space.h = containingHeight
else:
sizes.space.h = fitContent(containingHeight)
else:
let padding = sizes.padding.top + sizes.padding.bottom
let heightpx = height.spx(lctx, containingHeight, computed, padding)
sizes.space.h = stretch(heightpx)
proc resolveBlockSizes(lctx: LayoutState, containingWidth,
containingHeight: SizeConstraint, percHeight: Option[LayoutUnit],
computed: CSSComputedValues): ResolvedSizes =
var sizes = ResolvedSizes(
margin: resolveMargins(containingWidth, lctx, computed),
padding: resolvePadding(containingWidth, lctx, computed),
# Take defined sizes if our width/height resolves to auto.
# For block boxes, this is:
# (width: stretch(parentWidth), height: max-content)
space: AvailableSpace(w: containingWidth, h: containingHeight),
minWidth: 0,
maxWidth: high(LayoutUnit),
minHeight: 0,
maxHeight: high(LayoutUnit)
)
# Finally, calculate available width and height.
sizes.resolveBlockWidth(containingWidth, computed, lctx)
sizes.resolveBlockHeight(containingHeight, percHeight, computed, lctx)
return sizes
# Calculate and resolve available width & height for absolutely positioned
# boxes.
proc resolveAbsoluteSizes(lctx: LayoutState, computed: CSSComputedValues):
ResolvedSizes =
let containingWidth = lctx.positioned[^1].w
let containingHeight = lctx.positioned[^1].h
var sizes = ResolvedSizes(
margin: resolveMargins(containingWidth, lctx, computed),
padding: resolvePadding(containingWidth, lctx, computed),
minWidth: 0,
maxWidth: high(LayoutUnit)
)
sizes.resolveAbsoluteWidth(containingWidth, computed, lctx)
sizes.resolveAbsoluteHeight(containingHeight, computed, lctx)
return sizes
# Calculate and resolve available width & height for floating boxes.
proc resolveFloatSizes(lctx: LayoutState, containingWidth,
containingHeight: SizeConstraint, percHeight: Option[LayoutUnit],
computed: CSSComputedValues): ResolvedSizes =
var space = AvailableSpace(
w: fitContent(containingWidth),
h: containingHeight
)
let padding = resolvePadding(containingWidth, lctx, computed)
let inlinePadding = padding.left + padding.right
let blockPadding = padding.top + padding.bottom
let minWidth: LayoutUnit = if not computed{"min-width"}.auto:
computed{"min-width"}.spx(lctx, containingWidth, computed, inlinePadding)
else:
0
let maxWidth = if not computed{"max-width"}.auto:
computed{"max-width"}.spx(lctx, containingWidth, computed, inlinePadding)
else:
high(LayoutUnit)
let width = computed{"width"}
if not width.auto and width.canpx(containingWidth):
let widthpx = width.spx(lctx, containingWidth, computed, inlinePadding)
space.w = stretch(clamp(widthpx, minWidth, maxWidth))
elif containingWidth.isDefinite():
space.w = fitContent(clamp(containingWidth.u, minWidth, maxWidth))
let minHeight: LayoutUnit = if not computed{"min-height"}.auto:
computed{"min-height"}.spx(lctx, percHeight, computed, blockPadding).get(0)
else:
0
let maxHeight = if not computed{"max-height"}.auto:
computed{"max-height"}.spx(lctx, percHeight, computed, blockPadding)
.get(high(LayoutUnit))
else:
high(LayoutUnit)
let height = computed{"height"}
if not height.auto and height.canpx(containingHeight):
let heightpx = height.px(lctx, containingHeight)
space.h = stretch(clamp(heightpx, minHeight, maxHeight))
elif containingHeight.isDefinite():
space.h = fitContent(clamp(containingHeight.u, minHeight, maxHeight))
return ResolvedSizes(
margin: resolveMargins(containingWidth, lctx, computed),
padding: padding,
space: space,
minWidth: minWidth,
maxWidth: maxWidth,
minHeight: minHeight,
maxHeight: maxHeight
)
# Calculate and resolve available width & height for box children.
# containingWidth: width of the containing box
# containingHeight: ditto, but with height.
# Note that this is not the final content size, just the amount of space
# available for content.
# The percentage width/height is generally
# availableSize.isDefinite() ? availableSize.u : 0, but for some reason it
# differs for the root height (TODO: and all heights in quirks mode) in that
# it uses the lctx height. Therefore we pass percHeight as a separate
# parameter. (TODO surely there is a better solution to this?)
proc resolveSizes(lctx: LayoutState, containingWidth,
containingHeight: SizeConstraint, percHeight: Option[LayoutUnit],
computed: CSSComputedValues): ResolvedSizes =
if computed{"position"} == POSITION_ABSOLUTE:
return lctx.resolveAbsoluteSizes(computed)
elif computed{"float"} != FLOAT_NONE:
return lctx.resolveFloatSizes(containingWidth, containingHeight,
percHeight, computed)
else:
return lctx.resolveBlockSizes(containingWidth, containingHeight,
percHeight, computed)
proc resolveTableCellSizes(lctx: LayoutState, containingWidth,
containingHeight: SizeConstraint, override: bool,
computed: CSSComputedValues): ResolvedSizes =
var sizes = ResolvedSizes(
padding: resolvePadding(containingWidth, lctx, computed),
space: AvailableSpace(w: containingWidth, h: containingHeight),
minWidth: 0,
maxWidth: high(LayoutUnit),
minHeight: 0,
maxHeight: high(LayoutUnit)
)
if not override:
let width = computed{"width"}
if not width.auto and width.unit != UNIT_PERC:
sizes.space.w = stretch(width.px(lctx))
sizes.space.w.u -= sizes.padding.left
sizes.space.w.u -= sizes.padding.right
if not override:
let height = computed{"height"}
if not height.auto and height.unit != UNIT_PERC:
sizes.space.h = stretch(height.px(lctx))
return sizes
func toPercSize(sc: SizeConstraint): Option[LayoutUnit] =
if sc.isDefinite():
return some(sc.u)
return none(LayoutUnit)
proc append(a: var Strut, b: LayoutUnit) =
if b < 0:
a.neg = min(b, a.neg)
else:
a.pos = max(b, a.pos)
func sum(a: Strut): LayoutUnit =
return a.pos + a.neg
proc layoutRootInline(bctx: var BlockContext, inlines: seq[BoxBuilder],
space: AvailableSpace, computed: CSSComputedValues, offset,
bfcOffset: Offset): RootInlineFragment
proc buildBlockLayout(bctx: var BlockContext, box: BlockBox,
builder: BlockBoxBuilder, sizes: ResolvedSizes)
proc buildTableLayout(lctx: LayoutState, table: BlockBox,
builder: TableBoxBuilder, sizes: ResolvedSizes)
# Note: padding must still be applied after this.
proc applyWidth(box: BlockBox, sizes: ResolvedSizes,
maxChildWidth: LayoutUnit) =
# Make the box as small/large as the content's width or specified width.
box.size.w = maxChildWidth.applySizeConstraint(sizes.space.w)
# Then, clamp it to minWidth and maxWidth (if applicable).
box.size.w = clamp(box.size.w, sizes.minWidth, sizes.maxWidth)
proc applyHeight(box: BlockBox, sizes: ResolvedSizes,
maxChildHeight: LayoutUnit) =
# Make the box as small/large as the content's width or specified width.
box.size.h = maxChildHeight.applySizeConstraint(sizes.space.h)
# Then, clamp it to minWidth and maxWidth (if applicable).
box.size.h = clamp(box.size.h, sizes.minHeight, sizes.maxHeight)
proc applyPadding(box: BlockBox, padding: RelativeRect) =
box.size.w += padding.left
box.size.w += padding.right
box.size.h += padding.top
box.size.h += padding.bottom
func bfcOffset(bctx: BlockContext): Offset =
if bctx.parentBps != nil:
return bctx.parentBps.offset
return Offset()
proc buildInlineLayout(bctx: var BlockContext, box: BlockBox,
children: seq[BoxBuilder], sizes: ResolvedSizes) =
var bfcOffset = bctx.bfcOffset
let offset = Offset(x: sizes.padding.left, y: sizes.padding.top)
bfcOffset.x += box.offset.x + offset.x
bfcOffset.y += box.offset.y + offset.y
box.inline = bctx.layoutRootInline(children, sizes.space, box.computed,
offset, bfcOffset)
box.xminwidth = max(box.xminwidth, box.inline.xminwidth)
box.size.w = box.inline.size.w + sizes.padding.left + sizes.padding.right
box.applyWidth(sizes, box.inline.size.w)
box.applyHeight(sizes, box.inline.size.h)
box.applyPadding(sizes.padding)
box.baseline = offset.y + box.inline.baseline
box.firstBaseline = offset.y + box.inline.firstBaseline
const DisplayBlockLike = {DISPLAY_BLOCK, DISPLAY_LIST_ITEM,
DISPLAY_INLINE_BLOCK}
# Return true if no more margin collapsing can occur for the current strut.
func canFlushMargins(builder: BlockBoxBuilder, sizes: ResolvedSizes): bool =
if builder.computed{"position"} in {POSITION_ABSOLUTE, POSITION_FIXED}:
return false
return sizes.padding.top != 0 or sizes.padding.bottom != 0 or
builder.inlinelayout or builder.computed{"display"} notin DisplayBlockLike
proc flushMargins(bctx: var BlockContext, box: BlockBox) =
# Apply uncommitted margins.
let margin = bctx.marginTodo.sum()
if bctx.marginTarget == nil:
box.offset.y += margin
else:
if bctx.marginTarget.box != nil:
bctx.marginTarget.box.offset.y += margin
var p = bctx.marginTarget
while true:
p.offset.y += margin
p.resolved = true
p = p.next
if p == nil: break
bctx.marginTarget = nil
bctx.marginTodo = Strut()
proc clearFloats(offset: var Offset, bctx: var BlockContext, clear: CSSClear) =
var y = bctx.bfcOffset.y + offset.y
case clear
of CLEAR_LEFT, CLEAR_INLINE_START:
for ex in bctx.exclusions:
if ex.t == FLOAT_LEFT:
y = max(ex.offset.y + ex.size.h, y)
of CLEAR_RIGHT, CLEAR_INLINE_END:
for ex in bctx.exclusions:
if ex.t == FLOAT_RIGHT:
y = max(ex.offset.y + ex.size.h, y)
of CLEAR_BOTH:
for ex in bctx.exclusions:
y = max(ex.offset.y + ex.size.h, y)
of CLEAR_NONE: assert false
bctx.clearOffset = y
offset.y = y - bctx.bfcOffset.y
type
BlockState = object
offset: Offset
maxChildWidth: LayoutUnit
nested: seq[BlockBox]
space: AvailableSpace
xminwidth: LayoutUnit
prevParentBps: BlockPositionState
needsReLayout: bool
# State kept for when a re-layout is necessary:
oldMarginTodo: Strut
oldExclusionsLen: int
initialMarginTarget: BlockPositionState
initialTargetOffset: Offset
initialParentOffset: Offset
func findNextFloatOffset(bctx: BlockContext, offset: Offset, size: Size,
space: AvailableSpace, float: CSSFloat, clear: CSSClear): Offset =
# Algorithm originally from QEmacs.
var y = offset.y
let leftStart = offset.x
let rightStart = max(offset.x + size.w, space.w.u)
while true:
var left = leftStart
var right = rightStart
var miny = high(LayoutUnit)
let cy2 = y + size.h
for ex in bctx.exclusions:
let ey2 = ex.offset.y + ex.size.h
if cy2 >= ex.offset.y and y < ey2:
let ex2 = ex.offset.x + ex.size.w
if left + size.w >= ex.offset.x and left < ex2:
left = ex2
if right + size.w > ex.offset.x and right <= ex2:
right = ex.offset.x
miny = min(ey2, miny)
if right - left >= size.w or miny == high(LayoutUnit):
# Enough space, or no other exclusions found at this y offset.
if float == FLOAT_LEFT:
return Offset(x: left, y: y)
else: # FLOAT_RIGHT
return Offset(x: right - size.w, y: y)
# Move y to the bottom exclusion edge at the lowest y (where the exclusion
# still intersects with the previous y).
y = miny
proc positionFloat(bctx: var BlockContext, child: BlockBox,
space: AvailableSpace, bfcOffset: Offset) =
let clear = child.computed{"clear"}
if clear != CLEAR_NONE:
child.offset.clearFloats(bctx, clear)
let size = Size(
w: child.margin.left + child.margin.right + child.size.w,
h: child.margin.top + child.margin.bottom + child.size.h
)
let childBfcOffset = Offset(
x: bfcOffset.x + child.offset.x - child.margin.left,
y: max(bfcOffset.y + child.offset.y - child.margin.top, bctx.clearOffset)
)
assert space.w.t != FIT_CONTENT
let ft = child.computed{"float"}
assert ft != FLOAT_NONE
let offset = bctx.findNextFloatOffset(childBfcOffset, size, space, ft, clear)
child.offset = Offset(
x: offset.x - bfcOffset.x + child.margin.left,
y: offset.y - bfcOffset.y + child.margin.top
)
let ex = Exclusion(
offset: offset,
size: size,
t: ft
)
bctx.exclusions.add(ex)
bctx.maxFloatHeight = max(bctx.maxFloatHeight, ex.offset.y + ex.size.h)
proc positionFloats(bctx: var BlockContext) =
for f in bctx.unpositionedFloats:
bctx.positionFloat(f.box, f.space, f.parentBps.offset)
bctx.unpositionedFloats.setLen(0)
func establishesBFC(computed: CSSComputedValues): bool =
return computed{"float"} != FLOAT_NONE or
computed{"position"} in {POSITION_ABSOLUTE, POSITION_FIXED} or
computed{"display"} in {DISPLAY_INLINE_BLOCK, DISPLAY_FLOW_ROOT} +
InternalTableBox
#TODO overflow, contain, flex, grid, multicol, column-span
proc buildFlowLayout(bctx: var BlockContext, box: BlockBox,
builder: BlockBoxBuilder, sizes: ResolvedSizes) =
let isBfc = builder.computed.establishesBFC()
if not isBfc:
bctx.marginTodo.append(sizes.margin.top)
if builder.canFlushMargins(sizes):
bctx.flushMargins(box)
bctx.positionFloats()
if builder.computed{"clear"} != CLEAR_NONE:
box.offset.clearFloats(bctx, builder.computed{"clear"})
if builder.inlinelayout:
# Builder only contains inline boxes.
bctx.buildInlineLayout(box, builder.children, sizes)
else:
# Builder only contains block boxes.
bctx.buildBlockLayout(box, builder, sizes)
if not isBfc:
bctx.marginTodo.append(sizes.margin.bottom)
func toperc100(sc: SizeConstraint): Option[LayoutUnit] =
if sc.isDefinite():
return some(sc.u)
return none(LayoutUnit)
# parentWidth, parentHeight: width/height of the containing block.
proc addInlineBlock(ictx: var InlineContext, state: var InlineState,
builder: BlockBoxBuilder, parentWidth, parentHeight: SizeConstraint) =
let lctx = ictx.lctx
let percHeight = parentHeight.toperc100()
let sizes = lctx.resolveFloatSizes(parentWidth, maxContent(), percHeight,
builder.computed)
let box = BlockBox(
computed: builder.computed,
node: builder.node,
positioned: builder.computed{"position"} != POSITION_STATIC,
margin: sizes.margin
)
var bctx = BlockContext(lctx: lctx)
bctx.marginTodo.append(sizes.margin.top)
case builder.computed{"display"}
of DISPLAY_INLINE_BLOCK:
bctx.buildFlowLayout(box, builder, sizes)
of DISPLAY_INLINE_TABLE:
lctx.buildTableLayout(box, TableBoxBuilder(builder), sizes)
else:
assert false, $builder.computed{"display"}
bctx.positionFloats()
bctx.marginTodo.append(sizes.margin.bottom)
let marginTop = box.offset.y
let marginBottom = bctx.marginTodo.sum()
# If the highest float edge is higher than the box itself, set that as
# the box height.
if bctx.maxFloatHeight > box.offset.y + box.size.h + marginBottom:
box.size.h = bctx.maxFloatHeight - box.offset.y - marginBottom
box.offset.y = 0
# Apply the block box's properties to the atom itself.
let iblock = InlineAtom(
t: INLINE_BLOCK,
innerbox: box,
offset: Offset(x: sizes.margin.left),
size: Size(
w: box.size.w + sizes.margin.left + sizes.margin.right,
h: box.size.h
)
)
let iastate = InlineAtomState(
baseline: box.baseline,
vertalign: builder.computed{"vertical-align"},
marginTop: marginTop,
marginBottom: bctx.marginTodo.sum()
)
discard ictx.addAtom(state, iastate, iblock)
ictx.whitespacenum = 0
proc layoutInline(ictx: var InlineContext, box: InlineBoxBuilder):
InlineFragment =
let lctx = ictx.lctx
let fragment = InlineFragment(computed: box.computed, node: box.node)
if box.splitstart:
let marginLeft = box.computed{"margin-left"}.px(lctx, ictx.space.w)
ictx.currentLine.size.w += marginLeft
var state = InlineState(
computed: box.computed,
node: box.node,
fragment: fragment,
firstLine: true,
startOffsetTop: Offset(
x: ictx.currentLine.widthAfterWhitespace,
y: ictx.currentLine.line.offsety
)
)
if box.newline:
ictx.flushLine(state)
if box.splitstart:
let paddingLeft = box.computed{"padding-left"}.px(lctx, ictx.space.w)
ictx.currentLine.size.w += paddingLeft
assert box.children.len == 0 or box.text.len == 0
ictx.applyLineHeight(ictx.currentLine, state.computed)
if ictx.firstTextFragment == nil:
ictx.firstTextFragment = fragment
ictx.lastTextFragment = fragment
for text in box.text:
ictx.layoutText(state, text)
for child in box.children:
case child.computed{"display"}
of DISPLAY_INLINE:
let child = ictx.layoutInline(InlineBoxBuilder(child))
state.fragment.children.add(child)
of DISPLAY_INLINE_BLOCK, DISPLAY_INLINE_TABLE:
let child = BlockBoxBuilder(child)
let w = fitContent(ictx.space.w)
let h = ictx.space.h
ictx.addInlineBlock(state, child, w, h)
else:
assert false, "child.t is " & $child.computed{"display"}
if box.splitend:
let paddingRight = box.computed{"padding-right"}.px(lctx, ictx.space.w)
ictx.currentLine.size.w += paddingRight
let marginRight = box.computed{"margin-right"}.px(lctx, ictx.space.w)
ictx.currentLine.size.w += marginRight
#TODO we verticalAlignLine here to know line height, but this is incredibly
# ugly. Maybe figure out some incremental line alignment scheme instead?
ictx.verticalAlignLine()
if state.firstLine:
fragment.startOffset = Offset(
x: state.startOffsetTop.x,
y: ictx.currentLine.offsety + ictx.currentLine.size.h
)
fragment.endOffset = Offset(
x: ictx.currentLine.size.w,
y: ictx.currentLine.offsety
)
fragment.size.h = ictx.currentLine.offsety + ictx.currentLine.size.h -
state.startOffsetTop.y
return fragment
# Calculate the average division error for the placement of each line box.
# This is then used to evenly distribute error along line boxes.
func calculateErrorY(ictx: InlineContext): LayoutUnit =
if ictx.lines.len <= 1: return 0
var error: LayoutUnit = 0
for i in 0 ..< ictx.lines.high:
let dy = toInt(ictx.lines[i + 1].offsety - ictx.lines[i].offsety)
error += dy - (dy div ictx.cellheight) * ictx.cellheight
return error div ictx.lines.high
proc positionAtoms(ictx: var InlineContext) =
let erry = ictx.calculateErrorY()
var i = 0
for line in ictx.lines:
let erry0 = erry * i
for atom in line.atoms:
atom.offset.y += line.offsety - erry0
inc i
proc layoutRootInline(bctx: var BlockContext, inlines: seq[BoxBuilder],
space: AvailableSpace, computed: CSSComputedValues, offset,
bfcOffset: Offset): RootInlineFragment =
let root = RootInlineFragment(
offset: offset,
fragment: InlineFragment(computed: computed)
)
var ictx = bctx.newInlineContext(space, bfcOffset, root)
for child in inlines:
case child.computed{"display"}
of DISPLAY_INLINE:
let childFragment = ictx.layoutInline(InlineBoxBuilder(child))
root.fragment.children.add(childFragment)
of DISPLAY_INLINE_BLOCK, DISPLAY_INLINE_TABLE:
#TODO ???
var state = InlineState(
computed: computed,
fragment: InlineFragment(computed: root.fragment.computed),
firstLine: true
)
let w = fitContent(ictx.space.w)
let h = ictx.space.h
ictx.addInlineBlock(state, BlockBoxBuilder(child), w, h)
root.fragment.children.add(state.fragment)
else:
assert false, "child.t is " & $child.computed{"display"}
if ictx.firstTextFragment != nil:
root.fragment.startOffset = ictx.firstTextFragment.startOffset
if ictx.lastTextFragment != nil:
root.fragment.endOffset = ictx.lastTextFragment.endOffset
root.fragment.size = ictx.size
let lastFragment = if ictx.lastTextFragment != nil:
ictx.lastTextFragment
else:
InlineFragment(computed: computed)
var state = InlineState(computed: computed, fragment: lastFragment)
ictx.finish(state)
root.xminwidth = ictx.minwidth
ictx.positionAtoms()
return root
proc buildMarker(builder: MarkerBoxBuilder, space: AvailableSpace,
lctx: LayoutState): RootInlineFragment =
let space = AvailableSpace(
w: fitContent(space.w),
h: space.h
)
#TODO we should put markers right before the first atom of the parent
# list item or something...
var bctx = BlockContext(lctx: lctx)
let children = @[BoxBuilder(builder)]
return bctx.layoutRootInline(children, space, builder.computed, Offset(),
Offset())
# Build a block box without establishing a new block formatting context.
proc buildBlock(bctx: var BlockContext, builder: BlockBoxBuilder,
space: AvailableSpace, offset: Offset): BlockBox =
let lctx = bctx.lctx
let availableWidth = space.w
let availableHeight = maxContent() #TODO fit-content when clip
let percHeight = space.h.toPercSize()
let sizes = lctx.resolveSizes(availableWidth, availableHeight, percHeight,
builder.computed)
let box = BlockBox(
computed: builder.computed,
positioned: builder.computed{"position"} != POSITION_STATIC,
node: builder.node,
offset: Offset(x: offset.x + sizes.margin.left, y: offset.y),
margin: sizes.margin
)
bctx.buildFlowLayout(box, builder, sizes)
return box
proc buildListItem(bctx: var BlockContext, builder: ListItemBoxBuilder,
space: AvailableSpace, offset: Offset): ListItemBox =
let availableWidth = stretch(space.w)
let availableHeight = maxContent() #TODO fit-content when clip
let percHeight = space.h.toPercSize()
let lctx = bctx.lctx
let sizes = lctx.resolveSizes(availableWidth, availableHeight, percHeight,
builder.computed)
let box = ListItemBox(
computed: builder.computed,
positioned: builder.computed{"position"} != POSITION_STATIC,
node: builder.node,
offset: Offset(x: offset.x + sizes.margin.left, y: offset.y),
margin: sizes.margin
)
if builder.marker != nil:
box.marker = buildMarker(builder.marker, sizes.space, lctx)
bctx.buildFlowLayout(box, builder.content, sizes)
return box
proc buildTable(bctx: var BlockContext, builder: TableBoxBuilder,
space: AvailableSpace, offset: Offset): BlockBox =
let availableWidth = fitContent(space.w)
let availableHeight = maxContent() #TODO fit-content when clip
let percHeight = space.h.toPercSize()
let lctx = bctx.lctx
let sizes = lctx.resolveSizes(availableWidth, availableHeight, percHeight,
builder.computed)
let box = BlockBox(
computed: builder.computed,
positioned: builder.computed{"position"} != POSITION_STATIC,
node: builder.node,
offset: Offset(x: offset.x + sizes.margin.left, y: offset.y),
margin: sizes.margin
)
let isBfc = builder.computed.establishesBFC()
if not isBfc:
bctx.marginTodo.append(sizes.margin.top)
bctx.flushMargins(box)
lctx.buildTableLayout(box, builder, sizes)
if not isBfc:
bctx.marginTodo.append(sizes.margin.bottom)
return box
proc positionAbsolute(lctx: LayoutState, box: BlockBox, margin: RelativeRect) =
let last = lctx.positioned[^1]
let left = box.computed{"left"}
let right = box.computed{"right"}
let top = box.computed{"top"}
let bottom = box.computed{"bottom"}
let parentWidth = applySizeConstraint(lctx.attrs.width_px, last.w)
let parentHeight = applySizeConstraint(lctx.attrs.height_px, last.h)
box.x_positioned = not (left.auto and right.auto)
box.y_positioned = not (top.auto and bottom.auto)
if not left.auto:
box.offset.x = left.px(lctx, parentWidth)
box.offset.x += margin.left
elif not right.auto:
box.offset.x = parentWidth - right.px(lctx, parentWidth) - box.size.w
box.offset.x -= margin.right
if not top.auto:
box.offset.y = top.px(lctx, parentHeight)
box.offset.y += margin.top
elif not bottom.auto:
box.offset.y = parentHeight - bottom.px(lctx, parentHeight) - box.size.h
box.offset.y -= margin.bottom
proc positionRelative(parent, box: BlockBox, lctx: LayoutState) =
let left = box.computed{"left"}
let right = box.computed{"right"}
let top = box.computed{"top"}
let bottom = box.computed{"bottom"}
if not left.auto:
box.offset.x += right.px(lctx)
elif not right.auto:
box.offset.x += parent.size.w - right.px(lctx) - box.size.w
if not top.auto:
box.offset.y += top.px(lctx)
elif not top.auto:
box.offset.y -= parent.size.h - bottom.px(lctx) - box.size.h
type
CellWrapper = ref object
builder: TableCellBoxBuilder
box: BlockBox
coli: int
colspan: int
rowspan: int
reflow: bool
grown: int # number of remaining rows
real: CellWrapper # for filler wrappers
last: bool # is this the last filler?
height: LayoutUnit
baseline: LayoutUnit
RowContext = object
cells: seq[CellWrapper]
reflow: seq[bool]
width: LayoutUnit
height: LayoutUnit
builder: TableRowBoxBuilder
ncols: int
ColumnContext = object
minwidth: LayoutUnit
width: LayoutUnit
wspecified: bool
weight: float64
TableContext = object
lctx: LayoutState
caption: TableCaptionBoxBuilder
rows: seq[RowContext]
cols: seq[ColumnContext]
growing: seq[CellWrapper]
maxwidth: LayoutUnit
blockspacing: LayoutUnit
inlinespacing: LayoutUnit
collapse: bool
reflow: seq[bool]
proc buildTableCaption(lctx: LayoutState, builder: TableCaptionBoxBuilder,
availableWidth, availableHeight: SizeConstraint): BlockBox =
let percHeight = availableHeight.toperc100()
let sizes = lctx.resolveSizes(availableWidth, availableHeight, percHeight,
builder.computed)
let box = BlockBox(
computed: builder.computed,
node: builder.node,
positioned: builder.computed{"position"} != POSITION_STATIC,
margin: sizes.margin
)
var bctx = BlockContext(lctx: lctx)
bctx.buildFlowLayout(box, builder, sizes)
# Include marginTodo in our own height.
#TODO this is not quite correct, as height should be the padding height.
box.size.h += box.offset.y
box.size.h += bctx.marginTodo.sum()
return box
proc buildTableCell(lctx: LayoutState, builder: TableCellBoxBuilder,
availableWidth, availableHeight: SizeConstraint, override: bool):
BlockBox =
let sizes = lctx.resolveTableCellSizes(availableWidth, availableHeight,
override, builder.computed)
let box = BlockBox(
computed: builder.computed,
node: builder.node,
margin: sizes.margin
)
var ctx = BlockContext(lctx: lctx)
ctx.buildFlowLayout(box, builder, sizes)
# Table cells ignore margins.
box.offset.y = 0
return box
# Sort growing cells, and filter out cells that have grown to their intended
# rowspan.
proc sortGrowing(pctx: var TableContext) =
var i = 0
for j in 0 ..< pctx.growing.len:
if pctx.growing[i].grown == 0:
continue
if j != i:
pctx.growing[i] = pctx.growing[j]
inc i
pctx.growing.setLen(i)
pctx.growing.sort(proc(a, b: CellWrapper): int =
cmp(a.coli, b.coli))
# Grow cells with a rowspan > 1 (to occupy their place in a new row).
proc growRowspan(pctx: var TableContext, ctx: var RowContext,
growi, i, n: var int, growlen: int) =
while growi < growlen:
let cellw = pctx.growing[growi]
if cellw.coli > n:
break
dec cellw.grown
let rowspanFiller = CellWrapper(
colspan: cellw.colspan,
rowspan: cellw.rowspan,
coli: n,
real: cellw,
last: cellw.grown == 0
)
ctx.cells.add(nil)
ctx.cells[i] = rowspanFiller
for i in n ..< n + cellw.colspan:
ctx.width += pctx.cols[i].width
ctx.width += pctx.inlinespacing * 2
n += cellw.colspan
inc i
inc growi
proc preBuildTableRow(pctx: var TableContext, box: TableRowBoxBuilder,
parent: BlockBox, rowi, numrows: int): RowContext =
var ctx = RowContext(builder: box, cells: newSeq[CellWrapper](box.children.len))
var n = 0
var i = 0
var growi = 0
# this increases in the loop, but we only want to check growing cells that
# were added by previous rows.
let growlen = pctx.growing.len
for child in box.children:
pctx.growRowspan(ctx, growi, i, n, growlen)
assert child.computed{"display"} == DISPLAY_TABLE_CELL
let cellbuilder = TableCellBoxBuilder(child)
let colspan = cellbuilder.computed{"-cha-colspan"}
let rowspan = min(cellbuilder.computed{"-cha-rowspan"}, numrows - rowi)
let computedWidth = cellbuilder.computed{"width"}
let cw = if (not computedWidth.auto) and computedWidth.unit != UNIT_PERC:
stretch(computedWidth.px(pctx.lctx, 0))
else:
maxContent()
#TODO specified table height should be distributed among rows.
# Allow the table cell to use its specified width.
let box = pctx.lctx.buildTableCell(cellbuilder, cw, maxContent(),
override = false)
let wrapper = CellWrapper(
box: box,
builder: cellbuilder,
colspan: colspan,
rowspan: rowspan,
coli: n
)
ctx.cells[i] = wrapper
if rowspan > 1:
pctx.growing.add(wrapper)
wrapper.grown = rowspan - 1
if pctx.cols.len < n + colspan:
pctx.cols.setLen(n + colspan)
if ctx.reflow.len < n + colspan:
ctx.reflow.setLen(n + colspan)
let minw = box.xminwidth div colspan
let w = box.size.w div colspan
for i in n ..< n + colspan:
# Add spacing.
ctx.width += pctx.inlinespacing
# Figure out this cell's effect on the column's width.
# Four cases exits:
# 1. colwidth already fixed, cell width is fixed: take maximum
# 2. colwidth already fixed, cell width is auto: take colwidth
# 3. colwidth is not fixed, cell width is fixed: take cell width
# 4. neither of colwidth or cell width are fixed: take maximum
if ctx.reflow.len <= i: ctx.reflow.setLen(i + 1)
if pctx.cols[i].wspecified:
if not computedWidth.auto and computedWidth.unit != UNIT_PERC:
let ww = computedWidth.px(pctx.lctx)
# A specified column already exists; we take the larger width.
if ww > pctx.cols[i].width:
pctx.cols[i].width = ww
ctx.reflow[i] = true
else:
if pctx.cols[i].width < w:
wrapper.reflow = true
else:
if not computedWidth.auto and computedWidth.unit != UNIT_PERC:
let ww = computedWidth.px(pctx.lctx)
# This is the first specified column. Replace colwidth with whatever
# we have.
ctx.reflow[i] = true
pctx.cols[i].wspecified = true
pctx.cols[i].width = ww
else:
if pctx.cols[i].width < w:
pctx.cols[i].width = w
ctx.reflow[i] = true
if not computedWidth.auto and computedWidth.unit != UNIT_PERC:
let ww = computedWidth.px(pctx.lctx)
if pctx.cols[i].wspecified:
# A specified column already exists; we take the larger width.
if ww > pctx.cols[i].width:
pctx.cols[i].width = ww
ctx.reflow[i] = true
else:
# This is the first specified column. Replace colwidth with whatever
# we have.
pctx.cols[i].wspecified = true
pctx.cols[i].width = ww
if pctx.cols[i].minwidth < minw:
pctx.cols[i].minwidth = minw
if pctx.cols[i].width < minw:
pctx.cols[i].width = minw
ctx.reflow[i] = true
ctx.width += pctx.cols[i].width
# Add spacing to the right side.
ctx.width += pctx.inlinespacing
n += colspan
inc i
pctx.growRowspan(ctx, growi, i, n, growlen)
pctx.sortGrowing()
for i in 0 ..< ctx.cells.len:
doAssert ctx.cells[i] != nil, $i
ctx.ncols = n
return ctx
proc alignTableCell(cell: BlockBox, availableHeight, baseline: LayoutUnit) =
case cell.computed{"vertical-align"}.keyword
of VERTICAL_ALIGN_TOP:
cell.offset.y = 0
of VERTICAL_ALIGN_MIDDLE:
cell.offset.y = availableHeight div 2 - cell.size.h div 2
of VERTICAL_ALIGN_BOTTOM:
cell.offset.y = availableHeight - cell.size.h
else:
cell.offset.y = baseline - cell.firstBaseline
proc buildTableRow(pctx: TableContext, ctx: RowContext, parent: BlockBox,
builder: TableRowBoxBuilder, sizes: ResolvedSizes): BlockBox =
var x: LayoutUnit = 0
var n = 0
let row = BlockBox(
computed: builder.computed,
positioned: builder.computed{"position"} != POSITION_STATIC,
node: builder.node
)
var baseline: LayoutUnit = 0
# real cellwrappers of fillers
var to_align: seq[CellWrapper]
# cells with rowspan > 1 that must store baseline
var to_baseline: seq[CellWrapper]
# cells that we must update row height of
var to_height: seq[CellWrapper]
for cellw in ctx.cells:
var w: LayoutUnit = 0
for i in n ..< n + cellw.colspan:
w += pctx.cols[i].width
# Add inline spacing for merged columns.
w += pctx.inlinespacing * (cellw.colspan - 1) * 2
if cellw.reflow and cellw.builder != nil:
# Do not allow the table cell to make use of its specified width.
# e.g. in the following table
#
# the TD with a width of 5ch should be 9ch wide as well.
cellw.box = pctx.lctx.buildTableCell(cellw.builder, stretch(w),
maxContent(), override = true)
w = max(w, cellw.box.size.w)
let cell = cellw.box
x += pctx.inlinespacing
if cell != nil:
cell.offset.x += x
x += pctx.inlinespacing
x += w
n += cellw.colspan
const HasNoBaseline = {
VERTICAL_ALIGN_TOP, VERTICAL_ALIGN_MIDDLE, VERTICAL_ALIGN_BOTTOM
}
if cell != nil:
if cell.computed{"vertical-align"}.keyword notin HasNoBaseline: # baseline
baseline = max(cell.firstBaseline, baseline)
if cellw.rowspan > 1:
to_baseline.add(cellw)
row.nested.add(cell)
if cellw.rowspan > 1:
to_height.add(cellw)
row.size.h = max(row.size.h, cell.size.h div cellw.rowspan)
else:
let real = cellw.real
row.size.h = max(row.size.h, real.box.size.h div cellw.rowspan)
to_height.add(real)
if cellw.last:
to_align.add(real)
for cellw in to_height:
cellw.height += row.size.h
for cellw in to_baseline:
cellw.baseline = baseline
for cellw in to_align:
alignTableCell(cellw.box, cellw.height, cellw.baseline)
for cell in row.nested:
alignTableCell(cell, row.size.h, baseline)
row.size.w = x
return row
proc preBuildTableRows(ctx: var TableContext, rows: seq[TableRowBoxBuilder],
table: BlockBox) =
for i in 0 ..< rows.len:
let row = rows[i]
let rctx = ctx.preBuildTableRow(row, table, i, rows.len)
ctx.rows.add(rctx)
ctx.maxwidth = max(rctx.width, ctx.maxwidth)
proc preBuildTableRows(ctx: var TableContext, builder: TableBoxBuilder,
table: BlockBox) =
# Use separate seqs for different row groups, so that e.g. this HTML:
# echo 'worldhello'|cha -T text/html
# is rendered as:
# hello
# world
var thead: seq[TableRowBoxBuilder]
var tbody: seq[TableRowBoxBuilder]
var tfoot: seq[TableRowBoxBuilder]
var caption: TableCaptionBoxBuilder
for child in builder.children:
assert child.computed{"display"} in ProperTableChild
case child.computed{"display"}
of DISPLAY_TABLE_ROW:
tbody.add(TableRowBoxBuilder(child))
of DISPLAY_TABLE_HEADER_GROUP:
for child in child.children:
assert child.computed{"display"} == DISPLAY_TABLE_ROW
thead.add(TableRowBoxBuilder(child))
of DISPLAY_TABLE_ROW_GROUP:
for child in child.children:
assert child.computed{"display"} == DISPLAY_TABLE_ROW
tbody.add(TableRowBoxBuilder(child))
of DISPLAY_TABLE_FOOTER_GROUP:
for child in child.children:
assert child.computed{"display"} == DISPLAY_TABLE_ROW
tfoot.add(TableRowBoxBuilder(child))
of DISPLAY_TABLE_CAPTION:
if caption == nil:
caption = TableCaptionBoxBuilder(child)
else: discard
if caption != nil:
ctx.caption = caption
ctx.preBuildTableRows(thead, table)
ctx.preBuildTableRows(tbody, table)
ctx.preBuildTableRows(tfoot, table)
proc calcUnspecifiedColIndices(ctx: var TableContext, W: var LayoutUnit,
weight: var float64): seq[int] =
# Spacing for each column:
var avail = newSeqUninitialized[int](ctx.cols.len)
var i = 0
var j = 0
while i < ctx.cols.len:
if not ctx.cols[i].wspecified:
avail[j] = i
let colw = ctx.cols[i].width
let w = if colw < W:
toFloat64(colw)
else:
toFloat64(W) * (ln(toFloat64(colw) / toFloat64(W)) + 1)
ctx.cols[i].weight = w
weight += w
inc j
else:
W -= ctx.cols[i].width
avail.del(j)
inc i
return avail
func needsRedistribution(ctx: TableContext, computed: CSSComputedValues,
sizes: ResolvedSizes): bool =
case sizes.space.w.t
of MIN_CONTENT, MAX_CONTENT:
# bleh
return false
of STRETCH:
let u = sizes.space.w.u
return u > ctx.maxwidth or u < ctx.maxwidth
of FIT_CONTENT:
let u = sizes.space.w.u
return u > ctx.maxwidth and not computed{"width"}.auto or u < ctx.maxwidth
proc redistributeWidth(ctx: var TableContext, sizes: ResolvedSizes) =
var W = sizes.space.w.u
# Remove inline spacing from distributable width.
W -= ctx.cols.len * ctx.inlinespacing * 2
var weight: float64
var avail = ctx.calcUnspecifiedColIndices(W, weight)
var redo = true
while redo and avail.len > 0 and weight != 0:
if weight == 0: break # zero weight; nothing to distribute
if W < 0:
W = 0
redo = false
# divide delta width by sum of sqrt(width) for all elem in avail
let unit = toFloat64(W) / weight
weight = 0
for i in countdown(avail.high, 0):
let j = avail[i]
let x = unit * ctx.cols[j].weight
let mw = ctx.cols[j].minwidth
ctx.cols[j].width = x
if mw > x:
W -= mw
ctx.cols[j].width = mw
avail.del(i)
redo = true
else:
weight += ctx.cols[j].weight
ctx.reflow[j] = true
proc reflowTableCells(ctx: var TableContext) =
for i in countdown(ctx.rows.high, 0):
var row = addr ctx.rows[i]
var n = ctx.cols.len - 1
for j in countdown(row.cells.high, 0):
let m = n - row.cells[j].colspan
while n > m:
if ctx.reflow[n]:
row.cells[j].reflow = true
if n < row.reflow.len and row.reflow[n]:
ctx.reflow[n] = true
dec n
proc buildTableRows(ctx: TableContext, table: BlockBox, sizes: ResolvedSizes) =
var y: LayoutUnit = 0
for roww in ctx.rows:
if roww.builder.computed{"visibility"} == VISIBILITY_COLLAPSE:
continue
y += ctx.blockspacing
let row = ctx.buildTableRow(roww, table, roww.builder, sizes)
row.offset.y += y
row.offset.x += sizes.padding.left
row.size.w += sizes.padding.left
row.size.w += sizes.padding.right
y += ctx.blockspacing
y += row.size.h
table.nested.add(row)
table.size.w = max(row.size.w, table.size.w)
table.size.h = applySizeConstraint(y, sizes.space.h)
proc addTableCaption(ctx: TableContext, table: BlockBox,
sizes: ResolvedSizes) =
let lctx = ctx.lctx
case ctx.caption.computed{"caption-side"}
of CAPTION_SIDE_TOP, CAPTION_SIDE_BLOCK_START:
let caption = lctx.buildTableCaption(ctx.caption, stretch(table.size.w),
maxContent())
for r in table.nested:
r.offset.y += caption.size.h
table.nested.insert(caption, 0)
table.size.h += caption.size.h
table.size.w = max(table.size.w, caption.size.w)
of CAPTION_SIDE_BOTTOM, CAPTION_SIDE_BLOCK_END:
let caption = lctx.buildTableCaption(ctx.caption, stretch(table.size.w),
maxContent())
caption.offset.y += table.size.w
table.nested.add(caption)
table.size.h += caption.size.h
table.size.w = max(table.size.w, caption.size.w)
of CAPTION_SIDE_LEFT, CAPTION_SIDE_INLINE_START:
let caption = lctx.buildTableCaption(ctx.caption,
fitContent(sizes.space.w), fitContent(table.size.h))
for r in table.nested:
r.offset.x += caption.size.w
table.nested.insert(caption, 0)
table.size.w += caption.size.w
table.size.h = max(table.size.h, caption.size.h)
of CAPTION_SIDE_RIGHT, CAPTION_SIDE_INLINE_END:
let caption = lctx.buildTableCaption(ctx.caption,
fitContent(sizes.space.w), fitContent(table.size.h))
caption.offset.x += table.size.w
table.nested.add(caption)
table.size.w += caption.size.w
table.size.h = max(table.size.h, caption.size.h)
# Table layout. We try to emulate w3m's behavior here:
# 1. Calculate minimum and preferred width of each column
# 2. If column width is not auto, set width to max(min_col_width, specified)
# 3. Calculate the maximum preferred row width. If this is
# a) less than the specified table width, or
# b) greater than the table's content width:
# Distribute the table's content width among cells with an unspecified
# width. If this would give any cell a width < min_width, set that
# cell's width to min_width, then re-do the distribution.
proc buildTableLayout(lctx: LayoutState, table: BlockBox,
builder: TableBoxBuilder, sizes: ResolvedSizes) =
let collapse = table.computed{"border-collapse"} == BORDER_COLLAPSE_COLLAPSE
var ctx = TableContext(lctx: lctx, collapse: collapse)
if not ctx.collapse:
ctx.inlinespacing = table.computed{"border-spacing"}.a.px(lctx)
ctx.blockspacing = table.computed{"border-spacing"}.b.px(lctx)
ctx.preBuildTableRows(builder, table)
ctx.reflow = newSeq[bool](ctx.cols.len)
if ctx.needsRedistribution(table.computed, sizes):
ctx.redistributeWidth(sizes)
for col in ctx.cols:
table.size.w += col.width
ctx.reflowTableCells()
ctx.buildTableRows(table, sizes)
if ctx.caption != nil:
ctx.addTableCaption(table, sizes)
proc postAlignChild(box, child: BlockBox, width: LayoutUnit) =
case box.computed{"text-align"}
of TEXT_ALIGN_CHA_CENTER:
child.offset.x += max(width div 2 - child.size.w div 2, 0)
of TEXT_ALIGN_CHA_RIGHT:
child.offset.x += max(width - child.size.w - child.margin.right, 0)
of TEXT_ALIGN_CHA_LEFT:
discard # default
else:
discard
# Build an outer block box inside an existing block formatting context.
proc layoutBlockChild(bctx: var BlockContext, builder: BoxBuilder,
space: AvailableSpace, offset: Offset): BlockBox =
let child = case builder.computed{"display"}
of DISPLAY_BLOCK, DISPLAY_FLOW_ROOT:
bctx.buildBlock(BlockBoxBuilder(builder), space, offset)
of DISPLAY_LIST_ITEM:
bctx.buildListItem(ListItemBoxBuilder(builder), space, offset)
of DISPLAY_TABLE:
bctx.buildTable(TableBoxBuilder(builder), space, offset)
else:
assert false, "builder.t is " & $builder.computed{"display"}
BlockBox(nil)
return child
# Establish a new block formatting context and build a block box.
proc layoutRootBlock(lctx: LayoutState, builder: BoxBuilder,
space: AvailableSpace, offset: Offset, marginBottomOut: var LayoutUnit):
BlockBox =
var bctx = BlockContext(lctx: lctx)
let box = case builder.computed{"display"}
of DISPLAY_BLOCK, DISPLAY_FLOW_ROOT:
bctx.buildBlock(BlockBoxBuilder(builder), space, offset)
of DISPLAY_LIST_ITEM:
bctx.buildListItem(ListItemBoxBuilder(builder), space, offset)
of DISPLAY_TABLE:
bctx.buildTable(TableBoxBuilder(builder), space, offset)
else:
assert false, "builder.t is " & $builder.computed{"display"}
BlockBox(nil)
bctx.positionFloats()
marginBottomOut = bctx.marginTodo.sum()
# If the highest float edge is higher than the box itself, set that as
# the box height.
if bctx.maxFloatHeight > box.offset.y + box.size.h + marginBottomOut:
box.size.h = bctx.maxFloatHeight - box.offset.y - marginBottomOut
return box
proc initBlockPositionStates(state: var BlockState, bctx: var BlockContext,
box: BlockBox) =
let prevBps = bctx.ancestorsHead
bctx.ancestorsHead = BlockPositionState(
box: box,
offset: Offset(
x: state.offset.x,
y: state.offset.y
),
resolved: bctx.parentBps == nil
)
if prevBps != nil:
prevBps.next = bctx.ancestorsHead
if bctx.parentBps != nil:
bctx.ancestorsHead.offset.x += bctx.parentBps.offset.x
bctx.ancestorsHead.offset.y += bctx.parentBps.offset.y
# If parentBps is not nil, then our starting position is not in a new
# BFC -> we must add it to our BFC offset.
bctx.ancestorsHead.offset.x += box.offset.x
bctx.ancestorsHead.offset.y += box.offset.y
if bctx.marginTarget == nil:
bctx.marginTarget = bctx.ancestorsHead
state.initialMarginTarget = bctx.marginTarget
state.initialTargetOffset = bctx.marginTarget.offset
if bctx.parentBps == nil:
# We have just established a new BFC. Resolve the margins instantly.
bctx.marginTarget = nil
state.prevParentBps = bctx.parentBps
bctx.parentBps = bctx.ancestorsHead
state.initialParentOffset = bctx.parentBps.offset
func isParentResolved(state: BlockState, bctx: BlockContext): bool =
return bctx.marginTarget != state.initialMarginTarget or
state.prevParentBps != nil and state.prevParentBps.resolved
# Layout and place all children in the block box.
# Box placement must occur during this pass, since child box layout in the
# same block formatting context depends on knowing where the box offset is
# (because of floats).
proc layoutBlockChildren(state: var BlockState, bctx: var BlockContext,
children: seq[BoxBuilder]) =
for builder in children:
var dy: LayoutUnit = 0 # delta
var child: BlockBox
let isfloat = builder.computed{"float"} != FLOAT_NONE
let isinflow = builder.computed{"position"} notin {POSITION_ABSOLUTE,
POSITION_FIXED} and not isfloat
if builder.computed.establishesBFC():
var marginBottomOut: LayoutUnit
child = bctx.lctx.layoutRootBlock(builder, state.space, state.offset,
marginBottomOut)
# Do not collapse margins of elements that do not participate in
# the flow.
if isinflow:
bctx.marginTodo.append(child.margin.top)
bctx.flushMargins(child)
bctx.positionFloats()
bctx.marginTodo.append(child.margin.bottom)
else:
child.offset.y += child.margin.top
if state.isParentResolved(bctx):
# If parent offset has been resolved, use marginTodo in this
# float's initial offset.
child.offset.y += bctx.marginTodo.sum()
# delta y is difference between old and new offsets (margin-top), sum
# of margin todo in bctx2 (margin-bottom) + height.
dy = child.offset.y - state.offset.y + child.size.h + marginBottomOut
else:
child = bctx.layoutBlockChild(builder, state.space, state.offset)
# delta y is difference between old and new offsets (margin-top),
# plus height.
dy = child.offset.y - state.offset.y + child.size.h
let childWidth = child.margin.left + child.size.w + child.margin.right
state.maxChildWidth = max(state.maxChildWidth, childWidth)
state.xminwidth = max(state.xminwidth, child.xminwidth)
if child.computed{"position"} notin {POSITION_ABSOLUTE, POSITION_FIXED} and
not isfloat:
# Not absolute, and not a float.
state.offset.y += dy
elif isfloat:
if state.space.w.t == FIT_CONTENT:
# Float position depends on the available width, but in this case
# the parent width is not known.
# Set the "re-layout" flag, and skip this box.
# (If child boxes with fit-content have floats, those will be
# re-layouted too first, so we do not have to consider those here.)
state.needsReLayout = true
continue
# Two cases exist:
# a) The float cannot be positioned, because `box' has not resolved
# its y offset yet. (e.g. if float comes before the first child,
# we do not know yet if said child will move our y offset with a
# margin-top value larger than ours.)
# In this case we put it in unpositionedFloats, and defer positioning
# until our y offset is resolved.
# b) `box' has resolved its y offset, so the float can already
# be positioned.
# We check whether our y offset has been positioned as follows:
# * save marginTarget in BlockState at buildBlockLayout's start
# * if our saved marginTarget and bctx's marginTarget no longer point
# to the same object, that means our (or an ancestor's) offset has
# been resolved, i.e. we can position floats already.
if state.isParentResolved(bctx):
# y offset resolved
bctx.positionFloat(child, state.space, bctx.parentBps.offset)
else:
bctx.unpositionedFloats.add(UnpositionedFloat(
space: state.space,
parentBps: bctx.parentBps,
box: child
))
state.nested.add(child)
# Unlucky path, where we have floating blocks and a fit-content width.
# Reset marginTodo & the starting offset, and stretch the box to the
# max child width.
proc initReLayout(state: var BlockState, bctx: var BlockContext,
box: BlockBox, sizes: ResolvedSizes) =
bctx.marginTodo = state.oldMarginTodo
# Note: we do not reset our own BlockPositionState's offset; we assume it
# has already been resolved in the previous pass.
# (If not, it won't be resolved in this pass either, so the following code
# does not really change anything.)
bctx.parentBps.next = nil
if state.initialMarginTarget != bctx.marginTarget:
# Reset the initial margin target to its previous state, and then set
# it as the marginTarget again.
# Two solutions exist:
# a) Store the initial margin target offset, then restore it here. Seems
# clean, but it would require a linked list traversal to update all
# child margin positions.
# b) Re-use the previous margin target offsets; they are guaranteed
# to remain the same, because out-of-flow elements (like floats) do not
# participate in margin resolution. We do this by setting the margin
# target to a dummy object, which is a small price to pay compared
# to solution a).
bctx.marginTarget = BlockPositionState(
# Use initialTargetOffset to emulate the BFC positioning of the
# previous pass.
offset: state.initialTargetOffset
)
# Set ancestorsHead to a dummy object. Rationale: see below.
# Also set ancestorsHead as the dummy object, so next elements are
# chained to that.
bctx.ancestorsHead = bctx.marginTarget
state.nested.setLen(0)
bctx.exclusions.setLen(state.oldExclusionsLen)
state.offset = Offset(x: sizes.padding.left, y: sizes.padding.top)
box.applyWidth(sizes, state.maxChildWidth)
state.space.w = stretch(box.size.w)
# Re-position the children.
# The x offset with a fit-content width depends on the parent box's width,
# so we cannot do this in the first pass.
proc repositionChildren(state: BlockState, box: BlockBox, lctx: LayoutState) =
for child in state.nested:
if child.computed{"position"} != POSITION_ABSOLUTE:
box.postAlignChild(child, box.size.w)
case child.computed{"position"}
of POSITION_RELATIVE:
box.positionRelative(child, lctx)
of POSITION_ABSOLUTE:
lctx.positionAbsolute(child, child.margin)
else: discard #TODO
proc buildBlockLayout(bctx: var BlockContext, box: BlockBox,
builder: BlockBoxBuilder, sizes: ResolvedSizes) =
let lctx = bctx.lctx
let positioned = box.computed{"position"} != POSITION_STATIC
if positioned:
lctx.positioned.add(sizes.space)
var state = BlockState(
offset: Offset(x: sizes.padding.left, y: sizes.padding.top),
space: sizes.space,
oldMarginTodo: bctx.marginTodo,
oldExclusionsLen: bctx.exclusions.len
)
state.initBlockPositionStates(bctx, box)
state.layoutBlockChildren(bctx, builder.children)
if state.needsReLayout:
state.initReLayout(bctx, box, sizes)
state.layoutBlockChildren(bctx, builder.children)
if state.nested.len > 0:
let lastNested = state.nested[^1]
box.baseline = lastNested.offset.y + lastNested.baseline
# Apply width then move the inline offset of children that still need
# further relative positioning.
box.applyWidth(sizes, state.maxChildWidth)
state.repositionChildren(box, lctx)
# Set the inner height to the last y offset minus the starting offset
# (that is, top padding).
let innerHeight = state.offset.y - sizes.padding.top
box.applyHeight(sizes, innerHeight)
# Add padding; we cannot do this further up without influencing positioning.
box.applyPadding(sizes.padding)
# Pass down relevant data from state.
box.nested = state.nested
box.xminwidth = state.xminwidth
if state.isParentResolved(bctx):
# Our offset has already been resolved, ergo any margins in marginTodo will
# be passed onto the next box. Set marginTarget to nil, so that if we
# (or one of our ancestors) was still set as a marginTarget, it no
# longer is.
#TODO we might need flushMargin & positionFloats here
bctx.marginTarget = nil
# Reset parentBps to the previous node.
bctx.parentBps = state.prevParentBps
if positioned:
lctx.positioned.setLen(lctx.positioned.len - 1)
# Tree generation (1st pass)
# Returns a block box, disregarding the computed value of display
proc getBlockBox(computed: CSSComputedValues): BlockBoxBuilder =
return BlockBoxBuilder(computed: computed)
proc getTextBox(computed: CSSComputedValues): InlineBoxBuilder =
return InlineBoxBuilder(computed: computed)
proc getMarkerBox(computed: CSSComputedValues, listItemCounter: int):
MarkerBoxBuilder =
let computed = computed.inheritProperties()
computed{"display"} = DISPLAY_INLINE
# Use pre, so the space at the end of the default markers isn't ignored.
computed{"white-space"} = WHITESPACE_PRE
return MarkerBoxBuilder(
computed: computed,
text: @[computed{"list-style-type"}.listMarker(listItemCounter)]
)
proc getListItemBox(computed: CSSComputedValues, listItemCounter: int):
ListItemBoxBuilder =
return ListItemBoxBuilder(
computed: computed,
marker: getMarkerBox(computed, listItemCounter)
)
proc getTableBox(computed: CSSComputedValues): TableBoxBuilder =
return TableBoxBuilder(
computed: computed
)
# Also known as | |
.
proc getTableRowGroupBox(computed: CSSComputedValues): TableRowGroupBoxBuilder =
return TableRowGroupBoxBuilder(
computed: computed
)
proc getTableRowBox(computed: CSSComputedValues): TableRowBoxBuilder =
return TableRowBoxBuilder(
computed: computed
)
# For and | .
proc getTableCellBox(computed: CSSComputedValues): TableCellBoxBuilder =
return TableCellBoxBuilder(
computed: computed
)
proc getTableCaptionBox(computed: CSSComputedValues): TableCaptionBoxBuilder =
return TableCaptionBoxBuilder(
computed: computed
)
type BlockGroup = object
parent: BlockBoxBuilder
boxes: seq[BoxBuilder]
type InnerBlockContext = object
styledNode: StyledNode
blockgroup: BlockGroup
lctx: LayoutState
ibox: InlineBoxBuilder
iroot: InlineBoxBuilder
anonRow: TableRowBoxBuilder
anonTable: TableBoxBuilder
quoteLevel: int
listItemCounter: int
listItemReset: bool
parent: ptr InnerBlockContext
inlineStack: seq[StyledNode]
proc add(blockgroup: var BlockGroup, box: BoxBuilder) {.inline.} =
assert box.computed{"display"} in {DISPLAY_INLINE, DISPLAY_INLINE_TABLE,
DISPLAY_INLINE_BLOCK}, $box.computed{"display"}
blockgroup.boxes.add(box)
proc flush(blockgroup: var BlockGroup) {.inline.} =
if blockgroup.boxes.len > 0:
assert blockgroup.parent.computed{"display"} != DISPLAY_INLINE
let computed = blockgroup.parent.computed.inheritProperties()
computed{"display"} = DISPLAY_BLOCK
let bbox = getBlockBox(computed)
bbox.inlinelayout = true
bbox.children = blockgroup.boxes
blockgroup.parent.children.add(bbox)
blockgroup.boxes.setLen(0)
# Don't generate empty anonymous inline blocks between block boxes
func canGenerateAnonymousInline(blockgroup: BlockGroup,
computed: CSSComputedValues, str: string): bool =
return blockgroup.boxes.len > 0 and
blockgroup.boxes[^1].computed{"display"} == DISPLAY_INLINE or
computed.whitespacepre or not str.onlyWhitespace()
proc newBlockGroup(parent: BlockBoxBuilder): BlockGroup =
assert parent.computed{"display"} != DISPLAY_INLINE
result.parent = parent
proc generateTableBox(styledNode: StyledNode, lctx: LayoutState,
parent: var InnerBlockContext): TableBoxBuilder
proc generateTableRowGroupBox(styledNode: StyledNode, lctx: LayoutState,
parent: var InnerBlockContext): TableRowGroupBoxBuilder
proc generateTableRowBox(styledNode: StyledNode, lctx: LayoutState,
parent: var InnerBlockContext): TableRowBoxBuilder
proc generateTableCellBox(styledNode: StyledNode, lctx: LayoutState,
parent: var InnerBlockContext): TableCellBoxBuilder
proc generateTableCaptionBox(styledNode: StyledNode, lctx: LayoutState,
parent: var InnerBlockContext): TableCaptionBoxBuilder
proc generateBlockBox(styledNode: StyledNode, lctx: LayoutState,
marker = none(MarkerBoxBuilder), parent: ptr InnerBlockContext = nil):
BlockBoxBuilder
proc generateInlineBoxes(ctx: var InnerBlockContext, styledNode: StyledNode)
proc generateBlockBox(pctx: var InnerBlockContext, styledNode: StyledNode,
marker = none(MarkerBoxBuilder)): BlockBoxBuilder =
return generateBlockBox(styledNode, pctx.lctx, marker, addr pctx)
proc flushTableRow(ctx: var InnerBlockContext) =
if ctx.anonRow != nil:
if ctx.blockgroup.parent.computed{"display"} == DISPLAY_TABLE_ROW:
ctx.blockgroup.parent.children.add(ctx.anonRow)
else:
if ctx.anonTable == nil:
var wrappervals = ctx.styledNode.computed.inheritProperties()
wrappervals{"display"} = DISPLAY_TABLE
ctx.anonTable = getTableBox(wrappervals)
ctx.anonTable.children.add(ctx.anonRow)
ctx.anonRow = nil
proc flushTable(ctx: var InnerBlockContext) =
ctx.flushTableRow()
if ctx.anonTable != nil:
ctx.blockgroup.parent.children.add(ctx.anonTable)
proc iflush(ctx: var InnerBlockContext) =
if ctx.iroot != nil:
assert ctx.iroot.computed{"display"} in {DISPLAY_INLINE,
DISPLAY_INLINE_BLOCK, DISPLAY_INLINE_TABLE}
ctx.blockgroup.add(ctx.iroot)
ctx.iroot = nil
ctx.ibox = nil
proc bflush(ctx: var InnerBlockContext) =
ctx.iflush()
ctx.blockgroup.flush()
proc flushInherit(ctx: var InnerBlockContext) =
if ctx.parent != nil:
if not ctx.listItemReset:
ctx.parent.listItemCounter = ctx.listItemCounter
ctx.parent.quoteLevel = ctx.quoteLevel
proc flush(ctx: var InnerBlockContext) =
ctx.blockgroup.flush()
ctx.flushTableRow()
ctx.flushTable()
ctx.flushInherit()
proc generateFromElem(ctx: var InnerBlockContext, styledNode: StyledNode) =
let box = ctx.blockgroup.parent
case styledNode.computed{"display"}
of DISPLAY_BLOCK, DISPLAY_FLOW_ROOT:
ctx.iflush()
ctx.flush()
let childbox = ctx.generateBlockBox(styledNode)
box.children.add(childbox)
of DISPLAY_LIST_ITEM:
ctx.flush()
inc ctx.listItemCounter
let childbox = getListItemBox(styledNode.computed, ctx.listItemCounter)
if childbox.computed{"list-style-position"} == LIST_STYLE_POSITION_INSIDE:
childbox.content = ctx.generateBlockBox(styledNode, some(childbox.marker))
childbox.marker = nil
else:
childbox.content = ctx.generateBlockBox(styledNode)
childbox.content.computed = childbox.content.computed.copyProperties()
childbox.content.computed{"display"} = DISPLAY_BLOCK
box.children.add(childbox)
of DISPLAY_INLINE:
ctx.generateInlineBoxes(styledNode)
of DISPLAY_INLINE_BLOCK:
ctx.iflush()
let childbox = ctx.generateBlockBox(styledNode)
ctx.blockgroup.add(childbox)
of DISPLAY_TABLE:
ctx.flush()
let childbox = styledNode.generateTableBox(ctx.lctx, ctx)
box.children.add(childbox)
of DISPLAY_TABLE_ROW:
ctx.bflush()
ctx.flushTableRow()
let childbox = styledNode.generateTableRowBox(ctx.lctx, ctx)
if box.computed{"display"} in ProperTableRowParent:
box.children.add(childbox)
else:
if ctx.anonTable == nil:
var wrappervals = box.computed.inheritProperties()
#TODO make this an inline-table if we're in an inline context
wrappervals{"display"} = DISPLAY_TABLE
ctx.anonTable = getTableBox(wrappervals)
ctx.anonTable.children.add(childbox)
of DISPLAY_TABLE_ROW_GROUP, DISPLAY_TABLE_HEADER_GROUP,
DISPLAY_TABLE_FOOTER_GROUP:
ctx.bflush()
ctx.flushTableRow()
let childbox = styledNode.generateTableRowGroupBox(ctx.lctx, ctx)
if box.computed{"display"} in {DISPLAY_TABLE, DISPLAY_INLINE_TABLE}:
box.children.add(childbox)
else:
if ctx.anonTable == nil:
var wrappervals = box.computed.inheritProperties()
#TODO make this an inline-table if we're in an inline context
wrappervals{"display"} = DISPLAY_TABLE
ctx.anonTable = getTableBox(wrappervals)
ctx.anonTable.children.add(childbox)
of DISPLAY_TABLE_CELL:
ctx.bflush()
let childbox = styledNode.generateTableCellBox(ctx.lctx, ctx)
if box.computed{"display"} == DISPLAY_TABLE_ROW:
box.children.add(childbox)
else:
if ctx.anonRow == nil:
var wrappervals = box.computed.inheritProperties()
wrappervals{"display"} = DISPLAY_TABLE_ROW
ctx.anonRow = getTableRowBox(wrappervals)
ctx.anonRow.children.add(childbox)
of DISPLAY_INLINE_TABLE:
ctx.iflush()
let childbox = styledNode.generateTableBox(ctx.lctx, ctx)
ctx.blockgroup.add(childbox)
of DISPLAY_TABLE_CAPTION:
ctx.bflush()
ctx.flushTableRow()
let childbox = styledNode.generateTableCaptionBox(ctx.lctx, ctx)
if box.computed{"display"} in {DISPLAY_TABLE, DISPLAY_INLINE_TABLE}:
box.children.add(childbox)
else:
if ctx.anonTable == nil:
var wrappervals = box.computed.inheritProperties()
#TODO make this an inline-table if we're in an inline context
wrappervals{"display"} = DISPLAY_TABLE
ctx.anonTable = getTableBox(wrappervals)
ctx.anonTable.children.add(childbox)
of DISPLAY_TABLE_COLUMN:
discard #TODO
of DISPLAY_TABLE_COLUMN_GROUP:
discard #TODO
of DISPLAY_NONE: discard
proc reconstructInlineParents(ctx: var InnerBlockContext): InlineBoxBuilder =
let rootNode = ctx.inlineStack[0]
var parent = InlineBoxBuilder(
computed: rootNode.computed,
node: rootNode
)
ctx.iroot = parent
for i in 1 ..< ctx.inlineStack.len:
let node = ctx.inlineStack[i]
let nbox = InlineBoxBuilder(computed: node.computed, node: node)
parent.children.add(nbox)
parent = nbox
return parent
proc generateAnonymousInlineText(ctx: var InnerBlockContext, text: string,
styledNode: StyledNode) =
if ctx.iroot == nil:
let computed = styledNode.computed.inheritProperties()
ctx.ibox = InlineBoxBuilder(computed: computed, node: styledNode)
if ctx.inlineStack.len > 0:
let iparent = ctx.reconstructInlineParents()
iparent.children.add(ctx.ibox)
ctx.iroot = iparent
else:
ctx.iroot = ctx.ibox
ctx.ibox.text.add(text)
proc generateReplacement(ctx: var InnerBlockContext, child, parent: StyledNode) =
case child.content.t
of CONTENT_OPEN_QUOTE:
let quotes = parent.computed{"quotes"}
var text: string
if quotes.qs.len > 0:
text = quotes.qs[min(ctx.quoteLevel, quotes.qs.high)].s
elif quotes.auto:
text = quoteStart(ctx.quoteLevel)
else: return
ctx.generateAnonymousInlineText(text, parent)
inc ctx.quoteLevel
of CONTENT_CLOSE_QUOTE:
if ctx.quoteLevel > 0: dec ctx.quoteLevel
let quotes = parent.computed{"quotes"}
var text: string
if quotes.qs.len > 0:
text = quotes.qs[min(ctx.quoteLevel, quotes.qs.high)].e
elif quotes.auto:
text = quoteEnd(ctx.quoteLevel)
else: return
ctx.generateAnonymousInlineText(text, parent)
of CONTENT_NO_OPEN_QUOTE:
inc ctx.quoteLevel
of CONTENT_NO_CLOSE_QUOTE:
if ctx.quoteLevel > 0: dec ctx.quoteLevel
of CONTENT_STRING:
#TODO canGenerateAnonymousInline?
ctx.generateAnonymousInlineText(child.content.s, parent)
of CONTENT_IMAGE:
#TODO idk
ctx.generateAnonymousInlineText("[img]", parent)
of CONTENT_NEWLINE:
ctx.iflush()
#TODO ??
# this used to set ibox (before we had iroot), now I'm not sure if we
# should reconstruct here first
ctx.iroot = getTextBox(parent.computed.inheritProperties())
ctx.iroot.newline = true
ctx.iflush()
proc generateInlineBoxes(ctx: var InnerBlockContext, styledNode: StyledNode) =
ctx.iflush()
ctx.inlineStack.add(styledNode)
var lbox = ctx.reconstructInlineParents()
lbox.splitstart = true
ctx.ibox = lbox
for child in styledNode.children:
case child.t
of STYLED_ELEMENT:
ctx.generateFromElem(child)
of STYLED_TEXT:
if ctx.ibox != lbox:
ctx.iflush()
lbox = ctx.reconstructInlineParents()
ctx.ibox = lbox
lbox.text.add(child.text)
of STYLED_REPLACEMENT:
ctx.generateReplacement(child, styledNode)
if ctx.ibox != lbox:
ctx.iflush()
lbox = ctx.reconstructInlineParents()
ctx.ibox = lbox
lbox.splitend = true
ctx.inlineStack.setLen(ctx.inlineStack.len - 1)
ctx.iflush()
proc newInnerBlockContext(styledNode: StyledNode, box: BlockBoxBuilder,
lctx: LayoutState, parent: ptr InnerBlockContext): InnerBlockContext =
result = InnerBlockContext(
styledNode: styledNode,
blockgroup: newBlockGroup(box),
lctx: lctx,
parent: parent
)
if parent != nil:
result.listItemCounter = parent[].listItemCounter
result.quoteLevel = parent[].quoteLevel
for reset in styledNode.computed{"counter-reset"}:
if reset.name == "list-item":
result.listItemCounter = reset.num
result.listItemReset = true
proc generateInnerBlockBox(ctx: var InnerBlockContext) =
let box = ctx.blockgroup.parent
assert box.computed{"display"} != DISPLAY_INLINE
for child in ctx.styledNode.children:
case child.t
of STYLED_ELEMENT:
ctx.iflush()
ctx.generateFromElem(child)
of STYLED_TEXT:
if canGenerateAnonymousInline(ctx.blockgroup, box.computed, child.text):
ctx.generateAnonymousInlineText(child.text, ctx.styledNode)
of STYLED_REPLACEMENT:
ctx.generateReplacement(child, ctx.styledNode)
ctx.iflush()
proc generateBlockBox(styledNode: StyledNode, lctx: LayoutState,
marker = none(MarkerBoxBuilder), parent: ptr InnerBlockContext = nil):
BlockBoxBuilder =
let box = getBlockBox(styledNode.computed)
box.node = styledNode
var ctx = newInnerBlockContext(styledNode, box, lctx, parent)
if marker.isSome:
ctx.ibox = marker.get
ctx.iflush()
ctx.generateInnerBlockBox()
# Flush anonymous tables here, to avoid setting inline layout with tables.
ctx.flushTableRow()
ctx.flushTable()
# (flush here, because why not)
ctx.flushInherit()
# Avoid unnecessary anonymous block boxes. This also helps set our layout to
# inline even if no inner anonymous block was generated.
if box.children.len == 0:
box.children = ctx.blockgroup.boxes
box.inlinelayout = true
ctx.blockgroup.boxes.setLen(0)
ctx.blockgroup.flush()
return box
proc generateTableCellBox(styledNode: StyledNode, lctx: LayoutState,
parent: var InnerBlockContext): TableCellBoxBuilder =
let box = getTableCellBox(styledNode.computed)
var ctx = newInnerBlockContext(styledNode, box, lctx, addr parent)
ctx.generateInnerBlockBox()
ctx.flush()
return box
proc generateTableRowChildWrappers(box: TableRowBoxBuilder) =
var newchildren = newSeqOfCap[BoxBuilder](box.children.len)
var wrappervals = box.computed.inheritProperties()
wrappervals{"display"} = DISPLAY_TABLE_CELL
for child in box.children:
if child.computed{"display"} == DISPLAY_TABLE_CELL:
newchildren.add(child)
else:
let wrapper = getTableCellBox(wrappervals)
wrapper.children.add(child)
newchildren.add(wrapper)
box.children = newchildren
proc generateTableRowBox(styledNode: StyledNode, lctx: LayoutState,
parent: var InnerBlockContext): TableRowBoxBuilder =
let box = getTableRowBox(styledNode.computed)
var ctx = newInnerBlockContext(styledNode, box, lctx, addr parent)
ctx.generateInnerBlockBox()
ctx.flush()
box.generateTableRowChildWrappers()
return box
proc generateTableRowGroupChildWrappers(box: TableRowGroupBoxBuilder) =
var newchildren = newSeqOfCap[BoxBuilder](box.children.len)
var wrappervals = box.computed.inheritProperties()
wrappervals{"display"} = DISPLAY_TABLE_ROW
for child in box.children:
if child.computed{"display"} == DISPLAY_TABLE_ROW:
newchildren.add(child)
else:
let wrapper = getTableRowBox(wrappervals)
wrapper.children.add(child)
wrapper.generateTableRowChildWrappers()
newchildren.add(wrapper)
box.children = newchildren
proc generateTableRowGroupBox(styledNode: StyledNode, lctx: LayoutState,
parent: var InnerBlockContext): TableRowGroupBoxBuilder =
let box = getTableRowGroupBox(styledNode.computed)
var ctx = newInnerBlockContext(styledNode, box, lctx, addr parent)
ctx.generateInnerBlockBox()
ctx.flush()
box.generateTableRowGroupChildWrappers()
return box
proc generateTableCaptionBox(styledNode: StyledNode, lctx: LayoutState,
parent: var InnerBlockContext): TableCaptionBoxBuilder =
let box = getTableCaptionBox(styledNode.computed)
var ctx = newInnerBlockContext(styledNode, box, lctx, addr parent)
ctx.generateInnerBlockBox()
ctx.flush()
return box
proc generateTableChildWrappers(box: TableBoxBuilder) =
var newchildren = newSeqOfCap[BoxBuilder](box.children.len)
var wrappervals = box.computed.inheritProperties()
wrappervals{"display"} = DISPLAY_TABLE_ROW
for child in box.children:
if child.computed{"display"} in ProperTableChild:
newchildren.add(child)
else:
let wrapper = getTableRowBox(wrappervals)
wrapper.children.add(child)
wrapper.generateTableRowChildWrappers()
newchildren.add(wrapper)
box.children = newchildren
proc generateTableBox(styledNode: StyledNode, lctx: LayoutState,
parent: var InnerBlockContext): TableBoxBuilder =
let box = TableBoxBuilder(computed: styledNode.computed, node: styledNode)
var ctx = newInnerBlockContext(styledNode, box, lctx, addr parent)
ctx.generateInnerBlockBox()
ctx.flush()
box.generateTableChildWrappers()
return box
proc renderLayout*(root: StyledNode, attrs: WindowAttributes): BlockBox =
let space = AvailableSpace(
w: stretch(attrs.width_px),
h: stretch(attrs.height_px)
)
let lctx = LayoutState(
attrs: attrs,
positioned: @[space]
)
let builder = root.generateBlockBox(lctx)
var marginBottomOut: LayoutUnit
return lctx.layoutRootBlock(builder, space, Offset(), marginBottomOut)
|