//: A program is a book of 'recipes' (functions)
:(before "End Globals")
//: Each recipe is stored at a specific page number, or ordinal.
map<recipe_ordinal, recipe> Recipe;
//: You can also refer to each recipe by its name.
map<string, recipe_ordinal> Recipe_ordinal;
recipe_ordinal Next_recipe_ordinal = 1;
//: Ordinals are like numbers, except you can't do arithmetic on them. Ordinal
//: 1 is not less than 2, it's just different. Phone numbers are ordinals;
//: adding two phone numbers is meaningless. Here each recipe does something
//: incommensurable with any other recipe.
:(after "Types")
typedef long long int recipe_ordinal;
:(before "End Types")
// Recipes are lists of instructions. To perform or 'run' a recipe, the
// computer runs its instructions.
struct recipe {
string name;
vector<instruction> steps;
// End recipe Fields
};
:(before "struct recipe")
// Each instruction is either of the form:
// product1, product2, product3, ... <- operation ingredient1, ingredient2, ingredient3, ...
// or just a single 'label' starting with a non-alphanumeric character
// +label
// Labels don't do anything, they're just waypoints.
struct instruction {
bool is_label;
string label; // only if is_label
string name; // only if !is_label
recipe_ordinal operation; // Recipe_ordinal[name]
vector<reagent> ingredients; // only if !is_label
vector<reagent> products; // only if !is_label
// End instruction Fields
instruction();
void clear();
string to_string() const;
};
:(before "struct instruction")
// Ingredients and products are a single species -- a reagent. Reagents refer
// either to numbers or to locations in memory along with 'type' tags telling
// us how to interpret them. They also can contain arbitrary other lists of
// properties besides types, but we're getting ahead of ourselves.
struct reagent {
string original_string;
vector<pair<string, vector<string> > > properties;
string name;
double value;
bool initialized;
vector<type_ordinal> types;
reagent(string s);
reagent();
void set_value(double v) { value = v; initialized = true; }
string to_string() const;
};
:(before "struct reagent")
struct property {
vector<string> values;
};
:(before "End Globals")
// Locations refer to a common 'memory'. Each location can store a number.
map<long long int, double> Memory;
:(before "End Setup")
Memory.clear();
:(after "Types")
// Mu types encode how the numbers stored in different parts of memory are
// interpreted. A location tagged as a 'character' type will interpret the
// number 97 as the letter 'a', while a different location of type 'number'
// would not.
//
// Unlike most computers today, mu stores types in a single big table, shared
// by all the mu programs on the computer. This is useful in providing a
// seamless experience to help understand arbitrary mu programs.
typedef long long int type_ordinal;
:(before "End Globals")
map<string, type_ordinal> Type_ordinal;
map<type_ordinal, type_info> Type;
type_ordinal Next_type_ordinal = 1;
:(code)
void setup_types() {
Type.clear(); Type_ordinal.clear();
Type_ordinal["literal"] = 0;
Next_type_ordinal = 1;
// Mu Types Initialization
type_ordinal number = Type_ordinal["number"] = Next_type_ordinal++;
Type_ordinal["location"] = Type_ordinal["number"]; // wildcard type: either a pointer or a scalar
Type[number].name = "number";
type_ordinal address = Type_ordinal["address"] = Next_type_ordinal++;
Type[address].name = "address";
type_ordinal boolean = Type_ordinal["boolean"] = Next_type_ordinal++;
Type[boolean].name = "boolean";
type_ordinal character = Type_ordinal["character"] = Next_type_ordinal++;
Type[character].name = "character";
// Array types are a special modifier to any other type. For example,
// array:number or array:address:boolean.
type_ordinal array = Type_ordinal["array"] = Next_type_ordinal++;
Type[array].name = "array";
// End Mu Types Initialization
}
:(before "End One-time Setup")
setup_types();
:(before "End Types")
// You can construct arbitrary new types. New types are either 'containers'
// with multiple 'elements' of other types, or 'exclusive containers' containing
// one of multiple 'variants'. (These are similar to C structs and unions,
// respectively, though exclusive containers implicitly include a tag element
// recording which variant they should be interpreted as.)
//
// For example, storing bank balance and name for an account might require a
// container, but if bank accounts may be either for individuals or groups,
// with different properties for each, that may require an exclusive container
// whose variants are individual-account and joint-account containers.
enum kind_of_type {
primitive,
container,
exclusive_container
};
struct type_info {
string name;
kind_of_type kind;
long long int size; // only if type is not primitive; primitives and addresses have size 1 (except arrays are dynamic)
vector<vector<type_ordinal> > elements;
vector<string> element_names;
// End type_info Fields
type_info() :kind(primitive), size(0) {}
};
enum primitive_recipes {
IDLE = 0,
COPY,
// End Primitive Recipe Declarations
MAX_PRIMITIVE_RECIPES,
};
:(code)
//: It's all very well to construct recipes out of other recipes, but we need
//: to know how to do *something* out of the box. For the following
//: recipes there are only codes, no entries in the book, because mu just knows
//: what to do for them.
void setup_recipes() {
Recipe.clear(); Recipe_ordinal.clear();
Recipe_ordinal["idle"] = IDLE;
// Primitive Recipe Numbers
Recipe_ordinal["copy"] = COPY;
// End Primitive Recipe Numbers
}
//: We could just reset the recipe table after every test, but that gets slow
//: all too quickly. Instead, initialize the common stuff just once at
//: startup. Later layers will carefully undo each test's additions after
//: itself.
:(before "End One-time Setup")
setup_recipes();
assert(MAX_PRIMITIVE_RECIPES < 200); // level 0 is primitives; until 199
Next_recipe_ordinal = 200;
Recipe_ordinal["main"] = Next_recipe_ordinal++;
// End Load Recipes
:(before "End Test Run Initialization")
assert(Next_recipe_ordinal < 1000); // recipes being tested didn't overflow into test space
:(before "End Setup")
Next_recipe_ordinal = 1000; // consistent new numbers for each test
//:: Helpers
:(code)
instruction::instruction() :is_label(false), operation(IDLE) {
// End instruction Constructor
}
void instruction::clear() { is_label=false; label.clear(); operation=IDLE; ingredients.clear(); products.clear(); }
// Reagents have the form <name>:<type>:<type>:.../<property>/<property>/...
reagent::reagent(string s) :original_string(s), value(0), initialized(false) {
// Parsing reagent(string s)
istringstream in(s);
in >> std::noskipws;
// properties
while (!in.eof()) {
istringstream row(slurp_until(in, '/'));
row >> std::noskipws;
string name = slurp_until(row, ':');
vector<string> values;
while (!row.eof())
values.push_back(slurp_until(row, ':'));
properties.push_back(pair<string, vector<string> >(name, values));
}
// structures for the first row of properties
name = properties.at(0).first;
for (long long int i = 0; i < SIZE(properties.at(0).second); ++i) {
string type = properties.at(0).second.at(i);
if (Type_ordinal.find(type) == Type_ordinal.end()
// types can contain integers, like for array sizes
&& !is_integer(type)) {
Type_ordinal[type] = Next_type_ordinal++;
}
types.push_back(Type_ordinal[type]);
}
if (is_integer(name) && types.empty()) {
types.push_back(0);
properties.at(0).second.push_back("literal");
}
if (name == "_" && types.empty()) {
types.push_back(0);
properties.at(0).second.push_back("dummy");
}
// End Parsing reagent
}
reagent::reagent() :value(0), initialized(false) {
// The first property is special, so ensure we always have it.
// Other properties can be pushed back, but the first must always be
// assigned to.
properties.push_back(pair<string, vector<string> >("", vector<string>()));
}
string reagent::to_string() const {
ostringstream out;
out << "{name: \"" << name << "\"";
if (!properties.empty()) {
out << ", properties: [";
for (long long int i = 0; i < SIZE(properties); ++i) {
out << "\"" << properties.at(i).first << "\": ";
for (long long int j = 0; j < SIZE(properties.at(i).second); ++j) {
if (j > 0) out << ':';
out << "\"" << properties.at(i).second.at(j) << "\"";
}
if (i < SIZE(properties)-1) out << ", ";
else out << "]";
}
}
out << "}";
return out.str();
}
string instruction::to_string() const {
if (is_label) return label;
ostringstream out;
for (long long int i = 0; i < SIZE(products); ++i) {
if (i > 0) out << ", ";
out << products.at(i).original_string;
}
if (!products.empty()) out << " <- ";
out << name << ' ';
for (long long int i = 0; i < SIZE(ingredients); ++i) {
if (i > 0) out << ", ";
out << ingredients.at(i).original_string;
}
return out.str();
}
string slurp_until(istream& in, char delim) {
ostringstream out;
char c;
while (in >> c) {
if (c == delim) {
// drop the delim
break;
}
out << c;
}
return out.str();
}
bool has_property(reagent x, string name) {
for (long long int i = /*skip name:type*/1; i < SIZE(x.properties); ++i) {
if (x.properties.at(i).first == name) return true;
}
return false;
}
vector<string> property(const reagent& r, const string& name) {
for (long long int p = /*skip name:type*/1; p != SIZE(r.properties); ++p) {
if (r.properties.at(p).first == name)
return r.properties.at(p).second;
}
return vector<string>();
}
void dump_memory() {
for (map<long long int, double>::iterator p = Memory.begin(); p != Memory.end(); ++p) {
cout << p->first << ": " << no_scientific(p->second) << '\n';
}
}
void dump_recipe(const string& recipe_name) {
const recipe& r = Recipe[Recipe_ordinal[recipe_name]];
cout << "recipe " << r.name << " [\n";
for (long long int i = 0; i < SIZE(r.steps); ++i) {
cout << " " << r.steps.at(i).to_string() << '\n';
}
cout << "]\n";
}
:(before "End Types")
struct no_scientific {
double x;
explicit no_scientific(double y) :x(y) {}
};
:(code)
ostream& operator<<(ostream& os, no_scientific x) {
if (!isfinite(x.x)) {
// Infinity or NaN
os << x.x;
return os;
}
ostringstream tmp;
tmp << std::fixed << x.x;
os << trim_floating_point(tmp.str());
return os;
}
string trim_floating_point(const string& in) {
if (in.empty()) return "";
long long int len = SIZE(in);
while (len > 1) {
if (in.at(len-1) != '0') break;
--len;
}
if (in.at(len-1) == '.') --len;
//? cerr << in << ": " << in.substr(0, len) << '\n';
return in.substr(0, len);
}
void test_trim_floating_point() {
CHECK_EQ("", trim_floating_point(""));
CHECK_EQ("0", trim_floating_point("000000000"));
CHECK_EQ("1.5", trim_floating_point("1.5000"));
CHECK_EQ("1.000001", trim_floating_point("1.000001"));
CHECK_EQ("23", trim_floating_point("23.000000"));
CHECK_EQ("23", trim_floating_point("23.0"));
CHECK_EQ("23", trim_floating_point("23."));
CHECK_EQ("23", trim_floating_point("23"));
CHECK_EQ("3", trim_floating_point("3.000000"));
CHECK_EQ("3", trim_floating_point("3.0"));
CHECK_EQ("3", trim_floating_point("3."));
CHECK_EQ("3", trim_floating_point("3"));
}
:(before "End Includes")
#include<utility>
using std::pair;
#include<math.h>