//: A simple memory allocator to create space for new variables at runtime.
:(scenarios run)
:(scenario new)
# call new two times with identical arguments; you should get back different results
recipe main [
1:address:number/raw <- new number:type
2:address:number/raw <- new number:type
3:boolean/raw <- equal 1:address:number/raw, 2:address:number/raw
]
+mem: storing 0 in location 3
:(before "End Globals")
long long int Memory_allocated_until = Reserved_for_tests;
long long int Initial_memory_per_routine = 100000;
:(before "End Setup")
Memory_allocated_until = Reserved_for_tests;
Initial_memory_per_routine = 100000;
:(before "End routine Fields")
long long int alloc, alloc_max;
:(before "End routine Constructor")
alloc = Memory_allocated_until;
Memory_allocated_until += Initial_memory_per_routine;
alloc_max = Memory_allocated_until;
trace(Primitive_recipe_depth, "new") << "routine allocated memory from " << alloc << " to " << alloc_max << end();
//:: First handle 'type' operands.
:(before "End Mu Types Initialization")
Type_ordinal["type"] = 0;
:(after "Per-recipe Transforms")
// replace type names with type_ordinals
if (inst.operation == Recipe_ordinal["new"]) {
// End NEW Transform Special-cases
// first arg must be of type 'type'
if (inst.ingredients.empty())
raise << maybe(Recipe[r].name) << "'new' expects one or two ingredients\n" << end();
if (inst.ingredients.at(0).properties.empty()
|| inst.ingredients.at(0).properties.at(0).second.empty()
|| inst.ingredients.at(0).properties.at(0).second.at(0) != "type")
raise << maybe(Recipe[r].name) << "first ingredient of 'new' should be a type, but got " << inst.ingredients.at(0).original_string << '\n' << end();
if (Type_ordinal.find(inst.ingredients.at(0).name) == Type_ordinal.end())
raise << maybe(Recipe[r].name) << "unknown type " << inst.ingredients.at(0).name << '\n' << end();
inst.ingredients.at(0).set_value(Type_ordinal[inst.ingredients.at(0).name]);
trace(Primitive_recipe_depth, "new") << inst.ingredients.at(0).name << " -> " << inst.ingredients.at(0).name << end();
end_new_transform:;
}
//:: Now implement the primitive recipe.
//: todo: build 'new' in mu itself
:(before "End Primitive Recipe Declarations")
NEW,
:(before "End Primitive Recipe Numbers")
Recipe_ordinal["new"] = NEW;
:(before "End Primitive Recipe Checks")
case NEW: {
if (inst.ingredients.empty() || SIZE(inst.ingredients) > 2) {
raise << maybe(Recipe[r].name) << "'new' requires one or two ingredients, but got " << inst.to_string() << '\n' << end();
break;
}
reagent type = inst.ingredients.at(0);
if (!is_mu_scalar(type) && !is_literal(type)) {
raise << maybe(Recipe[r].name) << "first ingredient of 'new' should be a type, but got " << type.original_string << '\n' << end();
break;
}
break;
}
:(before "End Primitive Recipe Implementations")
case NEW: {
// compute the space we need
long long int size = 0;
long long int array_length = 0;
{
vector<type_ordinal> type;
type.push_back(current_instruction().ingredients.at(0).value);
if (SIZE(current_instruction().ingredients) > 1) {
// array
array_length = ingredients.at(1).at(0);
trace(Primitive_recipe_depth, "mem") << "array size is " << array_length << end();
size = array_length*size_of(type) + /*space for length*/1;
}
else {
// scalar
size = size_of(type);
}
}
//? Total_alloc += size;
//? Num_alloc++;
// compute the region of memory to return
// really crappy at the moment
ensure_space(size);
const long long int result = Current_routine->alloc;
trace(Primitive_recipe_depth, "mem") << "new alloc: " << result << end();
// save result
products.resize(1);
products.at(0).push_back(result);
// initialize allocated space
for (long long int address = result; address < result+size; ++address) {
Memory[address] = 0;
}
if (SIZE(current_instruction().ingredients) > 1) {
Memory[result] = array_length;
}
// bump
Current_routine->alloc += size;
// no support for reclaiming memory
assert(Current_routine->alloc <= Current_routine->alloc_max);
break;
}
//? :(before "End Globals")
//? long long int Total_alloc = 0;
//? long long int Num_alloc = 0;
//? long long int Total_free = 0;
//? long long int Num_free = 0;
//? :(before "End Setup")
//? Total_alloc = Num_alloc = Total_free = Num_free = 0;
//? :(before "End Teardown")
//? cerr << Total_alloc << "/" << Num_alloc
//? << " vs " << Total_free << "/" << Num_free << '\n';
//? cerr << SIZE(Memory) << '\n';
:(code)
void ensure_space(long long int size) {
if (size > Initial_memory_per_routine) {
tb_shutdown();
cerr << "can't allocate " << size << " locations, that's too much.\n";
exit(0);
}
if (Current_routine->alloc + size > Current_routine->alloc_max) {
// waste the remaining space and create a new chunk
Current_routine->alloc = Memory_allocated_until;
Memory_allocated_until += Initial_memory_per_routine;
Current_routine->alloc_max = Memory_allocated_until;
trace(Primitive_recipe_depth, "new") << "routine allocated memory from " << Current_routine->alloc << " to " << Current_routine->alloc_max << end();
}
}
:(scenario new_initializes)
% Memory_allocated_until = 10;
% Memory[Memory_allocated_until] = 1;
recipe main [
1:address:number <- new number:type
2:number <- copy *1:address:number
]
+mem: storing 0 in location 2
:(scenario new_array)
recipe main [
1:address:array:number/raw <- new number:type, 5
2:address:number/raw <- new number:type
3:number/raw <- subtract 2:address:number/raw, 1:address:array:number/raw
]
+run: 1:address:array:number/raw <- new number:type, 5
+mem: array size is 5
# don't forget the extra location for array size
+mem: storing 6 in location 3
:(scenario new_empty_array)
recipe main [
1:address:array:number/raw <- new number:type, 0
2:address:number/raw <- new number:type
3:number/raw <- subtract 2:address:number/raw, 1:address:array:number/raw
]
+run: 1:address:array:number/raw <- new number:type, 0
+mem: array size is 0
+mem: storing 1 in location 3
//: Make sure that each routine gets a different alloc to start.
:(scenario new_concurrent)
recipe f1 [
start-running f2:recipe
1:address:number/raw <- new number:type
# wait for f2 to complete
{
loop-unless 4:number/raw
}
]
recipe f2 [
2:address:number/raw <- new number:type
# hack: assumes scheduler implementation
3:boolean/raw <- equal 1:address:number/raw, 2:address:number/raw
# signal f2 complete
4:number/raw <- copy 1
]
+mem: storing 0 in location 3
//: If a routine runs out of its initial allocation, it should allocate more.
:(scenario new_overflow)
% Initial_memory_per_routine = 2;
recipe main [
1:address:number/raw <- new number:type
2:address:point/raw <- new point:type # not enough room in initial page
]
+new: routine allocated memory from 1000 to 1002
+new: routine allocated memory from 1002 to 1004
//: We also provide a way to return memory, and to reuse reclaimed memory.
//: todo: custodians, etc. Following malloc/free is a temporary hack.
:(scenario new_reclaim)
recipe main [
1:address:number <- new number:type
abandon 1:address:number
2:address:number <- new number:type # must be same size as abandoned memory to reuse
3:boolean <- equal 1:address:number, 2:address:number
]
# both allocations should have returned the same address
+mem: storing 1 in location 3
:(before "End Globals")
map<long long int, long long int> Free_list;
:(before "End Setup")
Free_list.clear();
:(before "End Primitive Recipe Declarations")
ABANDON,
:(before "End Primitive Recipe Numbers")
Recipe_ordinal["abandon"] = ABANDON;
:(before "End Primitive Recipe Checks")
case ABANDON: {
if (SIZE(inst.ingredients) != 1) {
raise << maybe(Recipe[r].name) << "'abandon' requires one ingredient, but got '" << inst.to_string() << "'\n" << end();
break;
}
reagent types = inst.ingredients.at(0);
canonize_type(types);
if (types.types.empty() || types.types.at(0) != Type_ordinal["address"]) {
raise << maybe(Recipe[r].name) << "first ingredient of 'abandon' should be an address, but got " << inst.ingredients.at(0).original_string << '\n' << end();
break;
}
break;
}
:(before "End Primitive Recipe Implementations")
case ABANDON: {
long long int address = ingredients.at(0).at(0);
reagent types = canonize(current_instruction().ingredients.at(0));
reagent target_type = lookup_memory(types);
abandon(address, size_of(target_type));
break;
}
:(code)
void abandon(long long int address, long long int size) {
//? Total_free += size;
//? Num_free++;
//? cerr << "abandon: " << size << '\n';
// clear memory
for (long long int curr = address; curr < address+size; ++curr)
Memory[curr] = 0;
// append existing free list to address
Memory[address] = Free_list[size];
Free_list[size] = address;
}
:(before "ensure_space(size)" following "case NEW")
if (Free_list[size]) {
long long int result = Free_list[size];
Free_list[size] = Memory[result];
for (long long int curr = result+1; curr < result+size; ++curr) {
if (Memory[curr] != 0) {
raise << maybe(current_recipe_name()) << "memory in free list was not zeroed out: " << curr << '/' << result << "; somebody wrote to us after free!!!\n" << end();
break; // always fatal
}
}
if (SIZE(current_instruction().ingredients) > 1)
Memory[result] = array_length;
else
Memory[result] = 0;
products.resize(1);
products.at(0).push_back(result);
break;
}
:(scenario new_differing_size_no_reclaim)
recipe main [
1:address:number <- new number:type
abandon 1:address:number
2:address:number <- new number:type, 2 # different size
3:boolean <- equal 1:address:number, 2:address:number
]
# no reuse
+mem: storing 0 in location 3
:(scenario new_reclaim_array)
recipe main [
1:address:array:number <- new number:type, 2
abandon 1:address:array:number
2:address:array:number <- new number:type, 2
3:boolean <- equal 1:address:array:number, 2:address:array:number
]
# reuse
+mem: storing 1 in location 3
//:: Next, extend 'new' to handle a unicode string literal argument.
:(scenario new_string)
recipe main [
1:address:array:character <- new [abc def]
2:character <- index *1:address:array:character, 5
]
# number code for 'e'
+mem: storing 101 in location 2
:(scenario new_string_handles_unicode)
recipe main [
1:address:array:character <- new [a«c]
2:number <- length *1:address:array:character
3:character <- index *1:address:array:character, 1
]
+mem: storing 3 in location 2
# unicode for '«'
+mem: storing 171 in location 3
:(before "End NEW Transform Special-cases")
if (!inst.ingredients.empty()
&& !inst.ingredients.at(0).properties.empty()
&& !inst.ingredients.at(0).properties.at(0).second.empty()
&& inst.ingredients.at(0).properties.at(0).second.at(0) == "literal-string") {
// skip transform
inst.ingredients.at(0).initialized = true;
goto end_new_transform;
}
:(after "case NEW" following "Primitive Recipe Implementations")
if (is_literal(current_instruction().ingredients.at(0))
&& current_instruction().ingredients.at(0).properties.at(0).second.at(0) == "literal-string") {
products.resize(1);
products.at(0).push_back(new_mu_string(current_instruction().ingredients.at(0).name));
break;
}
:(code)
long long int new_mu_string(const string& contents) {
// allocate an array just large enough for it
long long int string_length = unicode_length(contents);
//? Total_alloc += string_length+1;
//? Num_alloc++;
ensure_space(string_length+1); // don't forget the extra location for array size
// initialize string
long long int result = Current_routine->alloc;
Memory[Current_routine->alloc++] = string_length;
long long int curr = 0;
const char* raw_contents = contents.c_str();
for (long long int i = 0; i < string_length; ++i) {
uint32_t curr_character;
assert(curr < SIZE(contents));
tb_utf8_char_to_unicode(&curr_character, &raw_contents[curr]);
Memory[Current_routine->alloc] = curr_character;
curr += tb_utf8_char_length(raw_contents[curr]);
++Current_routine->alloc;
}
// mu strings are not null-terminated in memory
return result;
}
//: pass in commandline args as ingredients to main
//: todo: test this
:(after "Update main_routine")
Current_routine = main_routine;
for (long long int i = 1; i < argc; ++i) {
vector<double> arg;
arg.push_back(new_mu_string(argv[i]));
Current_routine->calls.front().ingredient_atoms.push_back(arg);
}
//: stash recognizes strings
:(scenario stash_string)
recipe main [
x:address:array:character <- new [abc]
stash [foo:], x:address:array:character
]
+app: foo: abc
:(before "End print Special-cases(reagent r, data)")
if (is_mu_string(r)) {
assert(scalar(data));
return read_mu_string(data.at(0));
}
:(scenario unicode_string)
recipe main [
x:address:array:character <- new [♠]
stash [foo:], x:address:array:character
]
+app: foo: ♠
//: Allocate more to routine when initializing a literal string
:(scenario new_string_overflow)
% Initial_memory_per_routine = 2;
recipe main [
1:address:number/raw <- new number:type
2:address:array:character/raw <- new [a] # not enough room in initial page, if you take the array size into account
]
+new: routine allocated memory from 1000 to 1002
+new: routine allocated memory from 1002 to 1004
//: helpers
:(code)
long long int unicode_length(const string& s) {
const char* in = s.c_str();
long long int result = 0;
long long int curr = 0;
while (curr < SIZE(s)) { // carefully bounds-check on the string
// before accessing its raw pointer
++result;
curr += tb_utf8_char_length(in[curr]);
}
return result;
}
bool is_mu_string(const reagent& x) {
return SIZE(x.types) == 3
&& x.types.at(0) == Type_ordinal["address"]
&& x.types.at(1) == Type_ordinal["array"]
&& x.types.at(2) == Type_ordinal["character"];
}
string read_mu_string(long long int address) {
long long int size = Memory[address];
if (size == 0) return "";
ostringstream tmp;
for (long long int curr = address+1; curr <= address+size; ++curr) {
tmp << to_unicode(static_cast<uint32_t>(Memory[curr]));
}
return tmp.str();
}