blob: 1a17c6d265ee23b4fe6a5f5bedc822740698fe30 (
plain) (
tree)
|
|
:(scenarios run)
:(scenario copy_literal)
recipe main [
1:integer <- copy 23:literal
]
+run: instruction main/0
+run: ingredient 0 is 23
+mem: storing in location 1
:(scenario copy)
recipe main [
1:integer <- copy 23:literal
2:integer <- copy 1:integer
]
+run: instruction main/1
+run: ingredient 0 is 1
+mem: location 1 is 23
+mem: storing in location 2
:(before "End Types")
// Each recipe can be 'called' many many times in a program. Each call needs a
// little extra information.
struct call {
recipe_number running_recipe;
size_t pc;
vector<int> incoming_atoms;
vector<int> outgoing_atoms;
call(recipe_number r) :running_recipe(r), pc(0) {}
};
typedef stack<call> call_stack;
struct routine {
size_t alloc;
size_t alloc_max;
call_stack calls;
size_t limit;
size_t running_since;
// todo: sleep conditions
};
:(code)
void run(string form) {
recipe_number r = add_recipes(form);
routine rr;
rr.calls.push(call(r));
run(rr);
}
void run(routine rr) {
// #defines save us the trouble of updating aliases when dependent variables
// change.
#define TOP_RECIPE Recipe[rr.calls.top().running_recipe]
#define instructions TOP_RECIPE.steps
while (!rr.calls.empty()) {
while (rr.calls.top().pc >= instructions.size()) {
rr.calls.pop();
if (rr.calls.empty()) return;
// todo: no results returned warning
++rr.calls.top().pc;
}
size_t& pc = rr.calls.top().pc;
//? cout << "instruction " << TOP_RECIPE.name << '/' << pc << '\n'; //? 1
trace("run") << "instruction " << TOP_RECIPE.name << '/' << pc;
switch (instructions[pc].operation) {
// Primitive Recipe Implementations.
case COPY: {
trace("run") << "ingredient 0 is " << instructions[pc].ingredients[0].name;
vector<int> data = read_memory(instructions[pc].ingredients[0]);
write_memory(instructions[pc].products[0], data);
break;
}
// End Primitive Recipe Implementations.
default: {
if (Recipe.find(instructions[pc].operation) == Recipe.end()) {
raise << "undefined operation " << instructions[pc].operation << '\n';
break;
}
//? cout << "calling " << instructions[pc].operation << '\n'; //? 1
rr.calls.push(call(instructions[pc].operation));
// todo: push incoming atoms
}}
++pc;
}
#undef TOP_RECIPE
#undef instructions
}
vector<int> read_memory(reagent x) {
//? cout << "read_memory: " << x.to_string() << '\n'; //? 1
vector<int> result;
if (x.types[0] == 0) { // literal
result.push_back(to_int(x.name));
return result;
}
int base = to_int(x.name);
for (size_t offset = 0; offset < Type[x.types[0]].size; ++offset) {
int val = Memory[base+offset];
trace("mem") << "location " << base+offset << " is " << val;
result.push_back(val);
}
return result;
}
void write_memory(reagent x, vector<int> data) {
int base = to_int(x.name);
size_t size = size_of(x);
if (size != data.size()) raise << "size mismatch in storing to " << x.to_string();
for (size_t offset = 0; offset < size; ++offset) {
trace("mem") << "storing in location " << base+offset;
Memory[base+offset] = data[offset];
}
}
:(code)
int to_int(string n) {
char* end = NULL;
int result = strtol(n.c_str(), &end, /*any base*/0);
assert(*end == '\0');
return result;
}
size_t size_of(reagent r) {
type_info t = Type[r.types[0]];
if (!t.is_record && !t.is_array) return t.size;
return t.size; // TODO
}
|