blob: f71be902002f4aab60cf7b486466844299b8c162 (
plain) (
tree)
|
|
//: Calls can take ingredients just like primitives. To access a recipe's
//: ingredients, use 'next-ingredient'.
:(scenario "next_ingredient")
recipe main [
f 2:literal
]
recipe f [
12:integer <- next-ingredient
13:integer <- add 1:literal, 12:integer
]
+run: instruction f/1
+mem: location 12 is 2
+mem: storing 3 in location 13
:(scenario "next_ingredient_missing")
recipe main [
f
]
recipe f [
_, 12:integer <- next-ingredient
]
+mem: storing 0 in location 12
:(before "End call Fields")
vector<vector<int> > ingredient_atoms;
size_t next_ingredient_to_process;
:(replace{} "call(recipe_number r)")
call(recipe_number r) :running_recipe(r), pc(0), next_ingredient_to_process(0) {}
:(replace "rr.calls.push(call(instructions[pc].operation))" following "End Primitive Recipe Implementations")
call callee(instructions[pc].operation);
for (vector<reagent>::iterator p = instructions[pc].ingredients.begin(); p != instructions[pc].ingredients.end(); ++p) {
callee.ingredient_atoms.push_back(read_memory(*p));
}
rr.calls.push(callee);
:(before "End Primitive Recipe Declarations")
NEXT_INGREDIENT,
:(before "End Primitive Recipe Numbers")
Recipe_number["next-ingredient"] = NEXT_INGREDIENT;
:(before "End Primitive Recipe Implementations")
case NEXT_INGREDIENT: {
if (rr.calls.top().next_ingredient_to_process < rr.calls.top().ingredient_atoms.size()) {
trace("run") << "product 0 is "
<< rr.calls.top().ingredient_atoms[rr.calls.top().next_ingredient_to_process][0];
write_memory(instructions[pc].products[0],
rr.calls.top().ingredient_atoms[rr.calls.top().next_ingredient_to_process]);
if (instructions[pc].products.size() > 1) {
vector<int> ingredient_exists;
ingredient_exists.push_back(1);
write_memory(instructions[pc].products[1], ingredient_exists);
}
++rr.calls.top().next_ingredient_to_process;
}
else {
if (instructions[pc].products.size() > 1) {
vector<int> no_ingredient;
no_ingredient.push_back(0);
write_memory(instructions[pc].products[1], no_ingredient);
}
}
break;
}
:(scenario "rewind_ingredients")
recipe main [
f 2:literal
]
recipe f [
12:integer <- next-ingredient # consume ingredient
_, 1:boolean <- next-ingredient # will not find any ingredients
rewind-ingredients
13:integer, 2:boolean <- next-ingredient # will find ingredient again
]
+mem: storing 2 in location 12
+mem: storing 0 in location 1
+mem: storing 2 in location 13
+mem: storing 1 in location 2
:(before "End Primitive Recipe Declarations")
REWIND_INGREDIENTS,
:(before "End Primitive Recipe Numbers")
Recipe_number["rewind-ingredients"] = REWIND_INGREDIENTS;
:(before "End Primitive Recipe Implementations")
case REWIND_INGREDIENTS: {
rr.calls.top().next_ingredient_to_process = 0;
break;
}
:(scenario "ingredient")
recipe main [
f 1:literal, 2:literal
]
recipe f [
12:integer <- ingredient 1:literal # consume second ingredient first
13:integer, 1:boolean <- next-ingredient # next-ingredient tries to scan past that
]
+mem: storing 2 in location 12
+mem: storing 0 in location 1
:(before "End Primitive Recipe Declarations")
INGREDIENT,
:(before "End Primitive Recipe Numbers")
Recipe_number["ingredient"] = INGREDIENT;
:(before "End Primitive Recipe Implementations")
case INGREDIENT: {
if (static_cast<size_t>(instructions[pc].ingredients[0].value) < rr.calls.top().ingredient_atoms.size()) {
rr.calls.top().next_ingredient_to_process = instructions[pc].ingredients[0].value;
trace("run") << "product 0 is "
<< rr.calls.top().ingredient_atoms[rr.calls.top().next_ingredient_to_process][0];
write_memory(instructions[pc].products[0],
rr.calls.top().ingredient_atoms[rr.calls.top().next_ingredient_to_process]);
if (instructions[pc].products.size() > 1) {
vector<int> ingredient_exists;
ingredient_exists.push_back(1);
write_memory(instructions[pc].products[1], ingredient_exists);
}
++rr.calls.top().next_ingredient_to_process;
}
else {
if (instructions[pc].products.size() > 1) {
vector<int> no_ingredient;
no_ingredient.push_back(0);
write_memory(instructions[pc].products[1], no_ingredient);
}
}
break;
}
|