;; what happens when our virtual machine starts up
(= initialization-fns* (queue))
(def reset ()
(each f (as cons initialization-fns*)
(f)))
(mac on-init body
`(enq (fn () ,@body)
initialization-fns*))
(mac init-fn (name . body)
`(enq (fn () (= (function* ',name) (convert-names:convert-braces:insert-code ',body)))
initialization-fns*))
;; persisting and checking traces for each test
(= traces* (queue))
(= trace-dir* ".traces/")
(ensure-dir trace-dir*)
(= curr-trace-file* nil)
(on-init
(awhen curr-trace-file*
(tofile (+ trace-dir* it)
(each (label trace) (as cons traces*)
(pr label ": " trace))))
(= curr-trace-file* nil)
(= traces* (queue)))
(def new-trace (filename)
;? (prn "new-trace " filename)
;? )
(= curr-trace-file* filename))
(= dump-trace* nil)
(def trace (label . args)
(when (or (is dump-trace* t)
(and dump-trace* (is label "-"))
(and dump-trace* (pos label dump-trace*!whitelist))
(and dump-trace* (no dump-trace*!whitelist) (~pos label dump-trace*!blacklist)))
(apply prn label ": " args))
(enq (list label (apply tostring:prn args))
traces*))
(redef tr args ; why am I still returning to prn when debugging? Will this help?
(do1 nil
(apply trace "-" args)))
(def tr2 (msg arg)
(tr msg arg)
arg)
(def check-trace-contents (msg expected-contents)
(unless (trace-contents-match expected-contents)
(prn "F - " msg)
(prn " trace contents")
(print-trace-contents-mismatch expected-contents)))
(def trace-contents-match (expected-contents)
(each (label msg) (as cons traces*)
(when (and expected-contents
(is label expected-contents.0.0)
(posmatch expected-contents.0.1 msg))
(pop expected-contents)))
(no expected-contents))
(def print-trace-contents-mismatch (expected-contents)
(each (label msg) (as cons traces*)
(whenlet (expected-label expected-msg) expected-contents.0
(if (and (is label expected-label)
(posmatch expected-msg msg))
(do (pr " * ")
(pop expected-contents))
(pr " "))
(pr label ": " msg)))
(prn " couldn't find")
(each (expected-label expected-msg) expected-contents
(prn " ! " expected-label ": " expected-msg)))
;; virtual machine state
; things that a future assembler will need separate memory for:
; code; types; args channel
(def clear ()
(= types* (table))
(= memory* (table))
(= function* (table)))
(enq clear initialization-fns*)
(on-init
(= types* (obj
; Each type must be scalar or array, sum or product or primitive
type (obj size 1) ; implicitly scalar and primitive
type-address (obj size 1 address t elem 'type)
type-array (obj array t elem 'type)
type-array-address (obj size 1 address t elem 'type-array)
location (obj size 1 address t elem 'location) ; assume it points to an atom
integer (obj size 1)
boolean (obj size 1)
boolean-address (obj size 1 address t elem 'boolean)
byte (obj size 1)
;? string (obj array t elem 'byte) ; inspired by Go
character (obj size 1) ; int32 like a Go rune
character-address (obj size 1 address t elem 'character)
string (obj size 1) ; temporary hack
; isolating function calls
scope (obj array t elem 'location) ; by convention index 0 points to outer scope
scope-address (obj size 1 address t elem 'scope)
; arrays consist of an integer length followed by the right number of elems
integer-array (obj array t elem 'integer)
integer-array-address (obj size 1 address t elem 'integer-array)
integer-address (obj size 1 address t elem 'integer) ; pointer to int
; records consist of a series of elems, corresponding to a list of types
integer-boolean-pair (obj size 2 record t elems '(integer boolean) fields '(int bool))
integer-boolean-pair-address (obj size 1 address t elem 'integer-boolean-pair)
integer-boolean-pair-array (obj array t elem 'integer-boolean-pair)
integer-boolean-pair-array-address (obj size 1 address t elem 'integer-boolean-pair-array)
integer-integer-pair (obj size 2 record t elems '(integer integer))
integer-point-pair (obj size 2 record t elems '(integer integer-integer-pair))
; tagged-values are the foundation of dynamic types
tagged-value (obj size 2 record t elems '(type location) fields '(type payload))
tagged-value-address (obj size 1 address t elem 'tagged-value)
tagged-value-array (obj array t elem 'tagged-value)
tagged-value-array-address (obj size 1 address t elem 'tagged-value-array)
tagged-value-array-address-address (obj size 1 address t elem 'tagged-value-array-address)
; heterogeneous lists
list (obj size 2 record t elems '(tagged-value list-address) fields '(car cdr))
list-address (obj size 1 address t elem 'list)
list-address-address (obj size 1 address t elem 'list-address)
; parallel routines use channels to synchronize
channel (obj size 3 record t elems '(integer integer tagged-value-array-address) fields '(first-full first-free circular-buffer))
channel-address (obj size 1 address t elem 'channel)
; editor
line (obj array t elem 'character)
line-address (obj size 1 address t elem 'line)
line-address-address (obj size 1 address t elem 'line-address)
screen (obj array t elem 'line-address)
screen-address (obj size 1 address t elem 'screen)
)))
;; managing concurrent routines
; routine = runtime state for a serial thread of execution
(def make-routine (fn-name . args)
(annotate 'routine (obj call-stack (list
(obj fn-name fn-name pc 0 args args caller-arg-idx 0)))))
(defextend empty (x) (isa x 'routine)
(no rep.x!call-stack))
(def stack (routine)
((rep routine) 'call-stack))
(mac push-stack (routine op)
`(push (obj fn-name ,op pc 0 caller-arg-idx 0)
((rep ,routine) 'call-stack)))
(mac pop-stack (routine)
`(pop ((rep ,routine) 'call-stack)))
(def top (routine)
stack.routine.0)
(def body (routine (o idx 0))
(function* stack.routine.idx!fn-name))
(mac pc (routine (o idx 0)) ; assignable
`((((rep ,routine) 'call-stack) ,idx) 'pc))
(mac caller-arg-idx (routine (o idx 0)) ; assignable
`((((rep ,routine) 'call-stack) ,idx) 'caller-arg-idx))
(mac caller-args (routine) ; assignable
`((((rep ,routine) 'call-stack) 0) 'args))
(mac results (routine) ; assignable
`((((rep ,routine) 'call-stack) 0) 'results))
(def waiting-for-exact-cycle? (routine)
(is 'literal rep.routine!sleep.1))
(def ready-to-wake-up (routine)
(assert no.routine*)
(if (is 'literal rep.routine!sleep.1)
(> curr-cycle* rep.routine!sleep.0)
(~is rep.routine!sleep.1 (memory* rep.routine!sleep.0))))
(on-init
(= running-routines* (queue)) ; simple round-robin scheduler
; set of sleeping routines; don't modify routines while they're in this table
(= sleeping-routines* (table))
(= completed-routines* nil) ; audit trail
(= routine* nil)
(= abort-routine* (parameter nil))
(= curr-cycle* 0)
(= scheduling-interval* 500)
(= scheduler-switch-table* nil) ; hook into scheduler for tests
)
; like arc's 'point' but you can also call ((abort-routine*)) in nested calls
(mac routine-mark body
(w/uniq (g p)
`(ccc (fn (,g)
(parameterize abort-routine* (fn ((o ,p)) (,g ,p))
,@body)))))
(def run fn-names
(freeze-functions)
(each it fn-names
(enq make-routine.it running-routines*))
(while (~empty running-routines*)
(= routine* deq.running-routines*)
(trace "schedule" top.routine*!fn-name)
(routine-mark
(run-for-time-slice scheduling-interval*))
(update-scheduler-state)
;? (tr "after run iter " running-routines*)
;? (tr "after run iter " empty.running-routines*)
))
; prepare next iteration of round-robin scheduler
;
; state before: routine* running-routines* sleeping-routines*
; state after: running-routines* (with next routine to run at head) sleeping-routines*
;
; responsibilities:
; add routine* to either running-routines* or sleeping-routines* or completed-routines*
; wake up any necessary sleeping routines (either by time or on a location)
; detect deadlock: kill all sleeping routines when none can be woken
(def update-scheduler-state ()
;? (trace "schedule" curr-cycle*)
(when routine*
(if
rep.routine*!sleep
(do (trace "schedule" "pushing " top.routine*!fn-name " to sleep queue")
(set sleeping-routines*.routine*))
(~empty routine*)
(do (trace "schedule" "scheduling " top.routine*!fn-name " for further processing")
(enq routine* running-routines*))
:else
(do (trace "schedule" "done with routine")
(push routine* completed-routines*)))
(= routine* nil))
(each (routine _) canon.sleeping-routines*
(when (ready-to-wake-up routine)
(trace "schedule" "waking up " top.routine!fn-name)
(wipe sleeping-routines*.routine) ; do this before modifying routine
(wipe rep.routine!sleep)
(++ pc.routine)
(enq routine running-routines*)))
(when (empty running-routines*)
(whenlet exact-sleeping-routines (keep waiting-for-exact-cycle? keys.sleeping-routines*)
(let next-wakeup-cycle (apply min (map [rep._!sleep 0] exact-sleeping-routines))
(= curr-cycle* (+ 1 next-wakeup-cycle))
(trace "schedule" "skipping to cycle " curr-cycle*)
(update-scheduler-state))))
(detect-deadlock))
(def detect-deadlock ()
(when (and (empty running-routines*)
(~empty sleeping-routines*)
(~some 'literal (map (fn(_) rep._!sleep.1)
keys.sleeping-routines*)))
(each (routine _) sleeping-routines*
(wipe sleeping-routines*.routine)
(= rep.routine!error "deadlock detected")
(push routine completed-routines*))))
(def die (msg)
(= rep.routine*!error msg)
(= rep.routine*!stack-trace rep.routine*!call-stack)
(wipe rep.routine*!call-stack)
((abort-routine*)))
;; running a single routine
(def nondummy (operand) ; precondition for helpers below
(~is '_ operand))
(mac v (operand) ; for value
`(,operand 0))
(def metadata (operand)
cdr.operand)
(def ty (operand)
operand.1) ; assume type is always first bit of metadata, and it's always present
(def typeinfo (operand)
(or (types* ty.operand)
(err "unknown type @(tostring prn.operand)")))
(def sz (operand)
(trace "sz" operand)
(if (is 'literal ty.operand)
'literal
(pos 'deref metadata.operand)
(do (assert typeinfo.operand!address "tried to deref non-address @operand")
(sz (list (m `(,(v operand) location))
typeinfo.operand!elem)))
(let-or it typeinfo.operand (err "no such type: @operand")
(if it!array
array-len.operand
it!size))))
(defextend sz (typename) (isa typename 'sym)
(or types*.typename!size
(err "type @typename doesn't have a size: " (tostring:pr types*.typename))))
(def addr (loc)
(trace "addr" loc)
(ret result v.loc
(trace "addr" "initial result: " result)
(unless (pos 'global metadata.loc)
;? (tr "aa " routine*)
(whenlet base rep.routine*!call-stack.0!default-scope
(if (< result memory*.base)
(do (trace "addr" "incrementing by " base)
(++ result base))
(die "addr: no room for var @result"))))
;? (tr "mm")
(when (pos 'deref metadata.loc)
(trace "addr" "deref " result " => " memory*.result)
(zap memory* result))
;? (tr "zz")
))
(def addrs (n sz)
(accum yield
(repeat sz
(yield n)
(++ n))))
(def m (loc) ; read memory, respecting metadata
(point return
(if (in ty.loc 'literal 'offset)
(return v.loc))
(when (is v.loc 'default-scope)
(return rep.routine*!call-stack.0!default-scope))
(trace "m" loc)
(assert (isa v.loc 'int) "addresses must be numeric (problem in convert-names?) @loc")
(with (n sz.loc
addr addr.loc)
;? (trace "m" "reading " n " locations starting at " addr)
(if (is 1 n)
(memory* addr)
:else
(annotate 'record
(map memory* (addrs addr n)))))))
(def setm (loc val) ; set memory, respecting metadata
(point return
(when (is v.loc 'default-scope)
(assert (is 1 sz.loc) "can't store compounds in default-scope @loc")
(= rep.routine*!call-stack.0!default-scope val)
(return))
(assert (isa v.loc 'int) "can't store to non-numeric address (problem in convert-names?)")
(trace "setm" loc " <= " val)
(with (n sz.loc
addr addr.loc)
(trace "setm" "size of " loc " is " n)
(assert n "setm: can't compute type of @loc")
(assert addr "setm: null pointer @loc")
(if (is 1 n)
(do (assert (~isa val 'record) "setm: record of size 1 @(tostring prn.val)")
(trace "setm" loc ": setting " addr " to " val)
(= (memory* addr) val))
(do (assert (isa val 'record) "setm: non-record of size >1 @val")
(each (dest src) (zip (addrs addr n)
(rep val))
(trace "setm" loc ": setting " dest " to " src)
(= (memory* dest) src)))))))
; (operand field-offset) -> (base-addr field-type)
; operand can be a deref address
; operand can be scope-based
; base-addr returned is always global
(def record-info (operand field-offset)
(trace "record-info" operand " " field-offset)
(assert (is 'offset (ty field-offset)) "record index @field-offset must have type 'offset'")
(with (base addr.operand
basetype typeinfo.operand
idx (v field-offset))
(trace "record-info" "initial base " base " type " canon.basetype)
(when (pos 'deref metadata.operand)
(assert basetype!address "@operand requests deref, but it's not an address of a record")
(= basetype (types* basetype!elem))
(trace "record-info" operand " requests deref => " canon.basetype))
(assert basetype!record "get on non-record @operand")
(assert (< -1 idx (len basetype!elems)) "@idx is out of bounds of record @operand")
(list (+ base (apply + (map sz (firstn idx basetype!elems))))
basetype!elems.idx)))
(def array-info (operand offset)
(trace "array-info" operand " " offset)
(with (base addr.operand
basetype typeinfo.operand
idx (m offset))
(trace "array-info" "initial base " base " type " canon.basetype)
(when (pos 'deref metadata.operand)
(assert basetype!address "@operand requests deref, but it's not an address of an array")
(= basetype (types* basetype!elem))
(trace "array-info" operand " requests deref => " canon.basetype))
(assert basetype!array "index on non-array @operand")
(let array-len array-len.operand
(trace "array-info" "array-len of " operand " is " array-len)
(assert array-len "can't compute array-len of @operand")
(unless (< -1 idx array-len)
(die "@idx is out of bounds of array @operand")))
(list (+ base
1 ; for array size
(* idx (sz basetype!elem)))
basetype!elem)))
(def array-len (operand)
(trace "array-len" operand)
(if typeinfo.operand!array
(m `(,v.operand integer))
(and typeinfo.operand!address (pos 'deref metadata.operand))
(m `(,v.operand integer-address ,@(cut operand 2)))
:else
(err "can't take len of non-array @operand")))
(def parse-instr (instr)
(iflet delim (pos '<- instr)
(list (cut instr 0 delim) ; oargs
(instr (+ delim 1)) ; op
(cut instr (+ delim 2))) ; args
(list nil instr.0 cdr.instr)))
($:require "charterm/main.rkt")
(def run-for-time-slice (time-slice)
(point return
(for ninstrs 0 (< ninstrs time-slice) (++ ninstrs)
(if (empty body.routine*) (err "@stack.routine*.0!fn-name not defined"))
(while (>= pc.routine* (len body.routine*))
(pop-stack routine*)
(if empty.routine* (return ninstrs))
(++ pc.routine*))
(++ curr-cycle*)
(trace "run" "-- " int-canon.memory*)
(trace "run" curr-cycle* " " top.routine*!fn-name " " pc.routine* ": " (body.routine* pc.routine*))
;? (trace "run" routine*)
(when (atom (body.routine* pc.routine*)) ; label
(when (aand scheduler-switch-table*
(alref it (body.routine* pc.routine*)))
(++ pc.routine*)
(trace "run" "context-switch forced " abort-routine*)
((abort-routine*)))
(++ pc.routine*)
(continue))
(let (oarg op arg) (parse-instr (body.routine* pc.routine*))
(let results
(case op
; arithmetic
add
(do (trace "add" (m arg.0) " " (m arg.1))
(+ (m arg.0) (m arg.1))
)
sub
(- (m arg.0) (m arg.1))
mul
(* (m arg.0) (m arg.1))
div
(/ (real (m arg.0)) (m arg.1))
idiv
(list (trunc:/ (m arg.0) (m arg.1))
(mod (m arg.0) (m arg.1)))
; boolean
and
(and (m arg.0) (m arg.1))
or
(or (m arg.0) (m arg.1))
not
(not (m arg.0))
; comparison
eq
(is (m arg.0) (m arg.1))
neq
(do (trace "neq" (m arg.0) " " (m arg.1))
(~is (m arg.0) (m arg.1))
)
lt
(< (m arg.0) (m arg.1))
gt
(> (m arg.0) (m arg.1))
le
(<= (m arg.0) (m arg.1))
ge
(>= (m arg.0) (m arg.1))
; control flow
jump
(do (= pc.routine* (+ 1 pc.routine* (v arg.0)))
(trace "jump" "jumping to " pc.routine*)
(continue))
jump-if
(let flag (m arg.0)
(trace "jump" "checking that " flag " is t")
(when (is t flag)
(= pc.routine* (+ 1 pc.routine* (v arg.1)))
(trace "jump" "jumping to " pc.routine*)
(continue)))
jump-unless ; convenient helper
(let flag (m arg.0)
(trace "jump" "checking that " flag " is not t")
(unless (is t flag)
(= pc.routine* (+ 1 pc.routine* (v arg.1)))
(trace "jump" "jumping to " pc.routine*)
(continue)))
; data management: scalars, arrays, records
copy
(m arg.0)
get
(let (addr type) (record-info arg.0 arg.1)
(trace "get" arg.0 " " arg.1 " => " addr " " type)
(m `(,addr ,type global)))
get-address
(let (addr _) (record-info arg.0 arg.1)
(trace "get-address" arg.0 " " arg.1 " => " addr)
addr)
index
(let (addr type) (array-info arg.0 arg.1)
(trace "index" arg.0 " " arg.1 " => " addr " " type)
(m `(,addr ,type global)))
index-address
(let (addr _) (array-info arg.0 arg.1)
(trace "index-address" arg.0 " " arg.1 " => " addr)
addr)
new
(let type (v arg.0)
(assert (is 'literal (ty arg.0)) "new: second arg @arg.0 must be literal")
(if (no types*.type) (err "no such type @type"))
; todo: initialize memory. currently racket does it for us
(if types*.type!array
(new-array type (m arg.1))
(new-scalar type)))
sizeof
(sizeof (m arg.0))
len
(let base arg.0
(if (or typeinfo.base!array typeinfo.base!address)
array-len.base
-1))
; tagged-values require one primitive
save-type
(annotate 'record `(,(ty arg.0) ,(m arg.0)))
; multiprocessing
run
(run (v arg.0))
fork
(enq (apply make-routine (v car.arg) (map m cdr.arg)) running-routines*)
; todo: errors should stall a process and let its parent
; inspect it
assert
(assert (m arg.0))
sleep
(let operand arg.0
; store sleep as either (<cycle number> literal) or (<location> <current value>)
(if (is ty.operand 'literal)
(let delay v.operand
(trace "run" "sleeping until " (+ curr-cycle* delay))
(= rep.routine*!sleep `(,(+ curr-cycle* delay) literal)))
(do
;? (tr "blocking on " operand " -> " (addr operand))
(= rep.routine*!sleep `(,addr.operand ,m.operand))))
((abort-routine*)))
; text interaction
cls
(do1 nil ($.charterm-clear-screen))
cll
(do1 nil ($.charterm-clear-line))
cursor
(do1 nil ($.charterm-cursor (m arg.0) (m arg.1)))
print-primitive
(do1 nil ((if ($.current-charterm) $.charterm-display pr) (m arg.0)))
getc
(and ($.charterm-byte-ready?) ($.charterm-read-key))
bold-mode
(do1 nil ($.charterm-bold))
non-bold-mode
(do1 nil ($.charterm-normal))
console-on
(do1 nil (if (no ($.current-charterm)) ($.open-charterm)))
console-off
(do1 nil (if ($.current-charterm) ($.close-charterm)))
; user-defined functions
arg
(let idx (if arg
(do (assert (is 'literal (ty arg.0)))
(v arg.0))
(do1 caller-arg-idx.routine*
(++ caller-arg-idx.routine*)))
(trace "arg" arg " " idx " " caller-args.routine*)
(if (len> caller-args.routine* idx)
(list caller-args.routine*.idx t)
(list nil nil)))
prepare-reply
(prepare-reply arg)
reply
(do (when arg
(prepare-reply arg))
(let results results.routine*
(pop-stack routine*)
(if empty.routine* (return ninstrs))
(let (caller-oargs _ _) (parse-instr (body.routine* pc.routine*))
(trace "reply" arg " " caller-oargs)
(each (dest val) (zip caller-oargs results)
(when nondummy.dest
(trace "reply" val " => " dest)
(setm dest val))))
(++ pc.routine*)
(while (>= pc.routine* (len body.routine*))
(pop-stack routine*)
(when empty.routine* (return ninstrs))
(++ pc.routine*))
(continue)))
; else try to call as a user-defined function
(do (if function*.op
(let callee-args (accum yield
(each a arg
(yield (m a))))
(push-stack routine* op)
(= caller-args.routine* callee-args))
(err "no such op @op"))
(continue))
)
; opcode generated some 'results'
; copy to output args
(if (acons results)
(each (dest val) (zip oarg results)
(unless (is dest '_)
(trace "run" val " => " dest)
(setm dest val)))
(when oarg ; must be a list
(trace "run" results " => " oarg.0)
(setm oarg.0 results)))
)
(++ pc.routine*)))
(return time-slice)))
(def prepare-reply (args)
(= results.routine*
(accum yield
(each a args
(yield (m a))))))
(enq (fn () (= Memory-in-use-until 1000))
initialization-fns*)
(def new-scalar (type)
(ret result Memory-in-use-until
(++ Memory-in-use-until sizeof.type)))
(def new-array (type size)
;? (prn "new array: @type @size")
(ret result Memory-in-use-until
(++ Memory-in-use-until (+ 1 (* (sizeof types*.type!elem) size)))
(= (memory* result) size)))
(def sizeof (type)
(trace "sizeof" type)
(assert types*.type "sizeof: no such type @type")
(if (~or types*.type!record types*.type!array)
types*.type!size
types*.type!record
(sum idfn
(accum yield
(each elem types*.type!elems
(yield sizeof.elem))))
:else
(err "sizeof can't handle @type (arrays require a specific variable)")))
;; desugar structured assembly based on blocks
(def convert-braces (instrs)
(let locs () ; list of information on each brace: (open/close pc)
(let pc 0
(loop (instrs instrs)
(each instr instrs
(if (or atom.instr (~is 'begin instr.0)) ; label or regular instruction
(do
(trace "c{0" pc " " instr " -- " locs)
(++ pc))
; hack: racket replaces curlies with parens, so we need the
; keyword 'begin' to delimit blocks.
; ultimately there'll be no nesting and curlies will just be
; in an instr by themselves.
:else ; brace
(do
(push `(open ,pc) locs)
(recur cdr.instr)
(push `(close ,pc) locs))))))
(zap rev locs)
(with (pc 0
stack ()) ; elems are pcs
(accum yield
(loop (instrs instrs)
(each instr instrs
(point continue
(when (atom instr) ; label
(yield instr)
(++ pc)
(continue))
(let delim (or (pos '<- instr) -1)
(with (oarg (if (>= delim 0)
(cut instr 0 delim))
op (instr (+ delim 1))
arg (cut instr (+ delim 2)))
(trace "c{1" pc " " op " " oarg)
(case op
begin
(do
(push pc stack)
(assert (is oarg nil) "begin: can't take oarg @instr")
(recur arg)
(pop stack)
(continue))
break
(do
(assert (is oarg nil) "break: can't take oarg @instr")
(assert (is arg nil) "break: can't take arg @instr")
(yield `(jump (,(close-offset pc locs) offset))))
break-if
(do
(assert (is oarg nil) "break-if: can't take oarg @instr")
(yield `(jump-if ,arg.0 (,(close-offset pc locs) offset))))
break-unless
(do
(assert (is oarg nil) "break-unless: can't take oarg @instr")
(yield `(jump-unless ,arg.0 (,(close-offset pc locs) offset))))
continue
(do
(assert (is oarg nil) "continue: can't take oarg @instr")
(assert (is arg nil) "continue: can't take arg @instr")
(yield `(jump (,(- stack.0 1 pc) offset))))
continue-if
(do
(trace "cvt0" "continue-if: " instr " => " (- stack.0 1))
(assert (is oarg nil) "continue-if: can't take oarg @instr")
(yield `(jump-if ,arg.0 (,(- stack.0 1 pc) offset))))
continue-unless
(do
(trace "cvt0" "continue-if: " instr " => " (- stack.0 1))
(assert (is oarg nil) "continue-unless: can't take oarg @instr")
(yield `(jump-unless ,arg.0 (,(- stack.0 1 pc) offset))))
;else
(yield instr))))
(++ pc))))))))
(def close-offset (pc locs)
(point return
;? (tr "close " pc " " locs)
(let stacksize 0
(each (state loc) locs
(point continue
;? (tr stacksize "/" done " " state " " loc)
(when (<= loc pc)
(continue))
;? (tr "process " stacksize loc)
(if (is 'open state) (++ stacksize) (-- stacksize))
; last time
;? (tr "process2 " stacksize loc)
(when (is -1 stacksize)
;? (tr "close now " loc)
(return (- loc pc 1))))))))
;; convert symbolic names to raw memory locations
(def convert-names (instrs)
(with (location (table)
isa-field (table))
(let idx 1
(each instr instrs
(point continue
(when atom.instr
(continue))
(trace "cn0" instr " " canon.location " " canon.isa-field)
(let (oargs op args) (parse-instr instr)
(if (in op 'get 'get-address)
(with (basetype (typeinfo args.0)
field (v args.1))
(assert basetype "no such type @args.0")
(trace "cn0" "field-access " field)
; todo: need to rename args.0 as well?
(when (pos 'deref (metadata args.0))
(trace "cn0" "field-access deref")
(assert basetype!address "@args.0 requests deref, but it's not an address of a record")
(= basetype (types* basetype!elem)))
(when (isa field 'sym)
(assert (or (~location field) isa-field.field) "field @args.1 is also a variable")
(when (~location field)
(trace "cn0" "new field; computing location")
(assert basetype!fields "no field names available for @instr")
(iflet idx (pos field basetype!fields)
(do (set isa-field.field)
(trace "cn0" "field location @idx")
(= location.field idx))
(assert nil "couldn't find field in @instr")))))
(each arg args
(assert (~isa-field v.arg) "arg @arg is also a field name")
(when (maybe-add arg location idx)
(err "use before set: @arg"))))
(each arg oargs
(trace "cn0" "checking " arg)
(unless (is arg '_)
(assert (~isa-field v.arg) "oarg @arg is also a field name")
(when (maybe-add arg location idx)
(trace "cn0" "location for arg " arg ": " idx)
(++ idx (sizeof ty.arg)))))))))
(trace "cn1" "update names " canon.location " " canon.isa-field)
(each instr instrs
(when (acons instr)
(let (oargs op args) (parse-instr instr)
(each arg args
(when (and nondummy.arg (location v.arg))
(zap location v.arg)))
(each arg oargs
(when (and nondummy.arg (location v.arg))
(zap location v.arg))))))
instrs))
(def maybe-add (arg location idx)
(trace "maybe-add" arg)
(when (and nondummy.arg
(~in ty.arg 'literal 'offset 'fn)
(~location v.arg)
(isa v.arg 'sym)
(~in v.arg 'nil 'default-scope)
(~pos 'global metadata.arg))
(= (location v.arg) idx)))
;; literate tangling system for reordering code
(def convert-quotes (instrs)
(let deferred (queue)
(each instr instrs
(when (acons instr)
(case instr.0
defer
(let (q qinstrs) instr.1
(assert (is 'make-br-fn q) "defer: first arg must be [quoted]")
(each qinstr qinstrs
(enq qinstr deferred))))))
(accum yield
(each instr instrs
(unless (and acons.instr
(in instr.0 'defer)) ; keep sync'd with case clauses above
(yield instr)))
(each instr (as cons deferred)
(yield instr)))))
(on-init
(= before* (table)) ; label -> queue of fragments
(= after* (table))) ; label -> list of fragments
; see add-code below for adding to before* and after*
(def insert-code (instrs)
(loop (instrs instrs)
(accum yield
(each instr instrs
(if (and (acons instr) (~is 'begin car.instr))
; simple instruction
(yield instr)
(and (acons instr) (is 'begin car.instr))
; block
(yield `{begin ,@(recur cdr.instr)})
(atom instr)
; label
(do
;? (prn "tangling " instr)
(each fragment (as cons before*.instr)
(each instr fragment
(yield instr)))
(yield instr)
(each fragment after*.instr
(each instr fragment
(yield instr)))))))))
;; system software
(init-fn maybe-coerce
((default-scope scope-address) <- new (scope literal) (30 literal))
((x tagged-value-address) <- new (tagged-value literal))
((x tagged-value-address deref) <- arg)
((p type) <- arg)
((xtype type) <- get (x tagged-value-address deref) (0 offset))
((match? boolean) <- eq (xtype type) (p type))
{ begin
(break-if (match? boolean))
(reply (0 literal) (nil literal))
}
((xvalue location) <- get (x tagged-value-address deref) (1 offset))
(reply (xvalue location) (match? boolean)))
(init-fn new-tagged-value
((default-scope scope-address) <- new (scope literal) (30 literal))
; assert (sizeof arg.0) == 1
((xtype type) <- arg)
((xtypesize integer) <- sizeof (xtype type))
((xcheck boolean) <- eq (xtypesize integer) (1 literal))
(assert (xcheck boolean))
; todo: check that arg 0 matches the type? or is that for the future typechecker?
((result tagged-value-address) <- new (tagged-value literal))
; result->type = arg 0
((resulttype location) <- get-address (result tagged-value-address deref) (type offset))
((resulttype location deref) <- copy (xtype type))
; result->payload = arg 1
((locaddr location) <- get-address (result tagged-value-address deref) (payload offset))
((locaddr location deref) <- arg)
(reply (result tagged-value-address)))
(init-fn list-next ; list-address -> list-address
((default-scope scope-address) <- new (scope literal) (30 literal))
((base list-address) <- arg)
((result list-address) <- get (base list-address deref) (cdr offset))
(reply (result list-address)))
(init-fn list-value-address ; list-address -> tagged-value-address
((default-scope scope-address) <- new (scope literal) (30 literal))
((base list-address) <- arg)
((result tagged-value-address) <- get-address (base list-address deref) (car offset))
(reply (result tagged-value-address)))
(init-fn new-list
((default-scope scope-address) <- new (scope literal) (30 literal))
; new-list = curr = new list
((new-list-result list-address) <- new (list literal))
((curr list-address) <- copy (new-list-result list-address))
{ begin
; while read curr-value
((curr-value integer) (exists? boolean) <- arg)
(break-unless (exists? boolean))
; curr.cdr = new list
((next list-address-address) <- get-address (curr list-address deref) (cdr offset))
((next list-address-address deref) <- new (list literal))
; curr = curr.cdr
((curr list-address) <- list-next (curr list-address))
; curr.car = (type curr-value)
((dest tagged-value-address) <- list-value-address (curr list-address))
((dest tagged-value-address deref) <- save-type (curr-value integer))
(continue)
}
; return new-list.cdr
((new-list-result list-address) <- list-next (new-list-result list-address)) ; memory leak
(reply (new-list-result list-address)))
(init-fn new-channel
((default-scope scope-address) <- new (scope literal) (30 literal))
; result = new channel
((result channel-address) <- new (channel literal))
; result.first-full = 0
((full integer-address) <- get-address (result channel-address deref) (first-full offset))
((full integer-address deref) <- copy (0 literal))
; result.first-free = 0
((free integer-address) <- get-address (result channel-address deref) (first-free offset))
((free integer-address deref) <- copy (0 literal))
; result.circular-buffer = new tagged-value[arg+1]
((capacity integer) <- arg)
((capacity integer) <- add (capacity integer) (1 literal)) ; unused slot for full? below
((channel-buffer-address tagged-value-array-address-address) <- get-address (result channel-address deref) (circular-buffer offset))
((channel-buffer-address tagged-value-array-address-address deref) <- new (tagged-value-array literal) (capacity integer))
(reply (result channel-address)))
(init-fn capacity
((default-scope scope-address) <- new (scope literal) (30 literal))
((chan channel) <- arg)
((q tagged-value-array-address) <- get (chan channel) (circular-buffer offset))
((qlen integer) <- len (q tagged-value-array-address deref))
(reply (qlen integer)))
(init-fn write
((default-scope scope-address) <- new (scope literal) (30 literal))
((chan channel-address) <- arg)
((val tagged-value) <- arg)
{ begin
; block if chan is full
((full boolean) <- full? (chan channel-address deref))
(break-unless (full boolean))
((full-address integer-address) <- get-address (chan channel-address deref) (first-full offset))
(sleep (full-address integer-address deref))
}
; store val
((q tagged-value-array-address) <- get (chan channel-address deref) (circular-buffer offset))
((free integer-address) <- get-address (chan channel-address deref) (first-free offset))
((dest tagged-value-address) <- index-address (q tagged-value-array-address deref) (free integer-address deref))
((dest tagged-value-address deref) <- copy (val tagged-value))
; increment free
((free integer-address deref) <- add (free integer-address deref) (1 literal))
{ begin
; wrap free around to 0 if necessary
((qlen integer) <- len (q tagged-value-array-address deref))
((remaining? boolean) <- lt (free integer-address deref) (qlen integer))
(break-if (remaining? boolean))
((free integer-address deref) <- copy (0 literal))
}
(reply (chan channel-address deref)))
(init-fn read
((default-scope scope-address) <- new (scope literal) (30 literal))
((chan channel-address) <- arg)
{ begin
; block if chan is empty
((empty boolean) <- empty? (chan channel-address deref))
(break-unless (empty boolean))
((free-address integer-address) <- get-address (chan channel-address deref) (first-free offset))
(sleep (free-address integer-address deref))
}
; read result
((full integer-address) <- get-address (chan channel-address deref) (first-full offset))
((q tagged-value-array-address) <- get (chan channel-address deref) (circular-buffer offset))
((result tagged-value) <- index (q tagged-value-array-address deref) (full integer-address deref))
; increment full
((full integer-address deref) <- add (full integer-address deref) (1 literal))
{ begin
; wrap full around to 0 if necessary
((qlen integer) <- len (q tagged-value-array-address deref))
((remaining? boolean) <- lt (full integer-address deref) (qlen integer))
(break-if (remaining? boolean))
((full integer-address deref) <- copy (0 literal))
}
(reply (result tagged-value) (chan channel-address deref)))
; An empty channel has first-empty and first-full both at the same value.
(init-fn empty?
((default-scope scope-address) <- new (scope literal) (30 literal))
; return arg.first-full == arg.first-free
((chan channel) <- arg)
((full integer) <- get (chan channel) (first-full offset))
((free integer) <- get (chan channel) (first-free offset))
((result boolean) <- eq (full integer) (free integer))
(reply (result boolean)))
; A full channel has first-empty just before first-full, wasting one slot.
; (Other alternatives: https://en.wikipedia.org/wiki/Circular_buffer#Full_.2F_Empty_Buffer_Distinction)
(init-fn full?
((default-scope scope-address) <- new (scope literal) (30 literal))
((chan channel) <- arg)
; curr = chan.first-free + 1
((curr integer) <- get (chan channel) (first-free offset))
((curr integer) <- add (curr integer) (1 literal))
{ begin
; if (curr == chan.capacity) curr = 0
((qlen integer) <- capacity (chan channel))
((remaining? boolean) <- lt (curr integer) (qlen integer))
(break-if (remaining? boolean))
((curr integer) <- copy (0 literal))
}
; return chan.first-full == curr
((full integer) <- get (chan channel) (first-full offset))
((result boolean) <- eq (full integer) (curr integer))
(reply (result boolean)))
(def canon (table)
(sort (compare < [tostring (prn:car _)]) (as cons table)))
(def int-canon (table)
(sort (compare < car) (as cons table)))
;; loading code into the virtual machine
(def add-code (forms)
(each (op . rest) forms
(case op
; syntax: def <name> [ <instructions> ]
def
(let (name (_make-br-fn body)) rest
(assert (is 'make-br-fn _make-br-fn))
; don't apply our lightweight tools just yet
(= function*.name body))
; syntax: before <label> [ <instructions> ]
;
; multiple before directives => code in order
before
(let (label (_make-br-fn fragment)) rest
(assert (is 'make-br-fn _make-br-fn))
(or= before*.label (queue))
(enq fragment before*.label))
; syntax: after <label> [ <instructions> ]
;
; multiple after directives => code in *reverse* order
; (if initialization order in a function is A B, corresponding
; finalization order should be B A)
after
(let (label (_make-br-fn fragment)) rest
(assert (is 'make-br-fn _make-br-fn))
(push fragment after*.label)))))
(def freeze-functions ()
(each (name body) canon.function*
;? (prn keys.before* " -- " keys.after*)
;? (= function*.name (convert-names:convert-braces:prn:insert-code body)))
(= function*.name (convert-names:convert-braces:insert-code body))))
;; load all provided files and start at 'main'
(reset)
(awhen cdr.argv
(map add-code:readfile it)
(run 'main)
(if ($.current-charterm) ($.close-charterm))
(prn memory*)
;? (prn completed-routines*)
)