blob: 46ddd6fcf2800f230781ac5c1f554f92b7edec70 (
plain) (
tree)
|
|
; To demonstrate tangle directives, we'll construct a factorial function with
; separate base and recursive cases. Compare factorial.mu.
; This isn't a very realistic example, just a simple demonstration of
; possibilities.
(def factorial [
((default-scope scope-address) <- new (scope literal) (30 literal))
((n integer) <- arg)
{ begin
base-case
}
recursive-case
])
(after base-case [
; if n=0 return 1
((zero? boolean) <- eq (n integer) (0 literal))
(break-unless (zero? boolean))
(reply (1 literal))
])
(after recursive-case [
; return n*factorial(n-1)
((x integer) <- sub (n integer) (1 literal))
((subresult integer) <- factorial (x integer))
((result integer) <- mul (subresult integer) (n integer))
(reply (result integer))
])
(def main [
((1 integer) <- factorial (5 literal))
(print-primitive ("result: " literal))
(print-primitive (1 integer))
(print-primitive ("\n" literal))
])
|