about summary refs log tree commit diff stats
path: root/apps/random
Commit message (Expand)AuthorAgeFilesLines
* 6703 - new types: code-point and graphemeKartik Agaram2020-08-021-0/+0
* 5522 - example app: random number streamKartik Agaram2019-08-201-0/+0
' href='#n39'>39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
:(after "Types")
// A program is a book of 'recipes' (functions)
typedef size_t recipe_number;
:(before "End Globals")
map<string, recipe_number> Recipe_number;
map<recipe_number, recipe> Recipe;
recipe_number Next_recipe_number = 1;

:(before "End Types")
// Recipes are lists of instructions. To run a recipe, the computer runs its
// instructions.
struct recipe {
  string name;
  vector<instruction> steps;
  // End recipe Fields
};

:(before "struct recipe")
// Each instruction is either of the form:
//   product1, product2, product3, ... <- operation ingredient1, ingredient2, ingredient3, ...
// or just a single 'label' starting with a non-alphanumeric character
//   +label
// Labels don't do anything, they're just waypoints.
struct instruction {
  bool is_label;
  string label;  // only if is_label
  string name;  // only if !is_label
  recipe_number operation;  // Recipe_number[name]
  vector<reagent> ingredients;  // only if !is_label
  vector<reagent> products;  // only if !is_label
  instruction();
  void clear();
  string to_string() const;
};

:(before "struct instruction")
// Ingredients and products are a single species -- a reagent. Reagents refer
// either to numbers or to locations in memory along with 'type' tags telling
// us how to interpret them. They also can contain arbitrary other lists of
// properties besides types, but we're getting ahead of ourselves.
struct reagent {
  vector<pair<string, vector<string> > > properties;
  string name;
  long long int value;
  bool initialized;
  vector<type_number> types;
  reagent(string s);
  reagent();
  void set_value(long long int v) { value = v; initialized = true; }
  string to_string() const;
};

:(before "struct reagent")
struct property {
  vector<string> values;
};

:(before "End Globals")
// Locations refer to a common 'memory'. Each location can store a number.
map<index_t, long long int> Memory;
:(before "End Setup")
Memory.clear();

:(after "Types")
// Mu types encode how the numbers stored in different parts of memory are
// interpreted. A location tagged as a 'character' type will interpret the
// number 97 as the letter 'a', while a different location of type 'integer'
// would not.
//
// Unlike most computers today, mu stores types in a single big table, shared
// by all the mu programs on the computer. This is useful in providing a
// seamless experience to help understand arbitrary mu programs.
typedef size_t type_number;
:(before "End Globals")
map<string, type_number> Type_number;
map<type_number, type_info> Type;
type_number Next_type_number = 1;
:(code)
void setup_types() {
  Type.clear();  Type_number.clear();
  Type_number["literal"] = 0;
  Next_type_number = 1;
  // Mu Types Initialization
  type_number integer = Type_number["integer"] = Next_type_number++;
  Type_number["location"] = Type_number["integer"];  // wildcard type: either a pointer or a scalar
  Type[integer].name = "integer";
  type_number address = Type_number["address"] = Next_type_number++;
  Type[address].name = "address";
  type_number boolean = Type_number["boolean"] = Next_type_number++;
  Type[boolean].name = "boolean";
  type_number character = Type_number["character"] = Next_type_number++;
  Type[character].name = "character";
  // Array types are a special modifier to any other type. For example,
  // array:integer or array:address:boolean.
  type_number array = Type_number["array"] = Next_type_number++;
  Type[array].name = "array";
  // End Mu Types Initialization
}
:(before "End One-time Setup")
setup_types();

:(before "End Types")
// You can construct arbitrary new types. New types are either 'containers'
// with multiple 'elements' of other types, or 'exclusive containers' containing
// one of multiple 'variants'. (These are similar to C structs and unions,
// respectively, though exclusive containers implicitly include a tag element
// recording which variant they should be interpreted as.)
//
// For example, storing bank balance and name for an account might require a
// container, but if bank accounts may be either for individuals or groups,
// with different properties for each, that may require an exclusive container
// whose variants are individual-account and joint-account containers.
enum kind_of_type {
  primitive,
  container,
  exclusive_container
};

struct type_info {
  string name;
  kind_of_type kind;
  size_t size;  // only if type is not primitive; primitives and addresses have size 1 (except arrays are dynamic)
  vector<vector<type_number> > elements;
  vector<string> element_names;
  // End type_info Fields
  type_info() :kind(primitive), size(0) {}
};

enum primitive_recipes {
  IDLE = 0,
  COPY,
  // End Primitive Recipe Declarations
  MAX_PRIMITIVE_RECIPES,
};
:(code)
//: It's all very well to construct recipes out of other recipes, but we need
//: to know how to do *something* out of the box. For the following
//: recipes there are only codes, no entries in the book, because mu just knows
//: what to do for them.
void setup_recipes() {
  Recipe.clear();  Recipe_number.clear();
  Recipe_number["idle"] = IDLE;
  // Primitive Recipe Numbers
  Recipe_number["copy"] = COPY;
  // End Primitive Recipe Numbers
}
//: We could just reset the recipe table after every test, but that gets slow
//: all too quickly. Instead, initialize the common stuff just once at
//: startup. Later layers will carefully undo each test's additions after
//: itself.
:(before "End One-time Setup")
setup_recipes();
assert(MAX_PRIMITIVE_RECIPES < 100);  // level 0 is primitives; until 99
Next_recipe_number = 100;
// End Load Recipes
:(before "End Test Run Initialization")
assert(Next_recipe_number < 1000);  // functions being tested didn't overflow into test space
:(before "End Setup")
Next_recipe_number = 1000;  // consistent new numbers for each test



//:: Helpers

:(code)
instruction::instruction() :is_label(false), operation(IDLE) {}
void instruction::clear() { is_label=false; label.clear(); operation=IDLE; ingredients.clear(); products.clear(); }

// Reagents have the form <name>:<type>:<type>:.../<property>/<property>/...
reagent::reagent(string s) :value(0), initialized(false) {
  istringstream in(s);
  in >> std::noskipws;
  // properties
  while (!in.eof()) {
    istringstream row(slurp_until(in, '/'));
    row >> std::noskipws;
    string name = slurp_until(row, ':');
    vector<string> values;
    while (!row.eof())
      values.push_back(slurp_until(row, ':'));
    properties.push_back(pair<string, vector<string> >(name, values));
  }
  // structures for the first row of properties
  name = properties[0].first;
  for (index_t i = 0; i < properties[0].second.size(); ++i) {
    types.push_back(Type_number[properties[0].second[i]]);
  }
  if (name == "_" && types.empty()) {
    types.push_back(0);
    properties[0].second.push_back("dummy");
  }
}
reagent::reagent() :value(0), initialized(false) {
  // The first property is special, so ensure we always have it.
  // Other properties can be pushed back, but the first must always be
  // assigned to.
  properties.push_back(pair<string, vector<string> >("", vector<string>()));
}
string reagent::to_string() const {
  ostringstream out;
  out << "{name: \"" << name << "\", value: " << value << ", type: ";
  for (index_t i = 0; i < types.size(); ++i) {
    out << types[i];
    if (i < types.size()-1) out << "-";
  }
  if (!properties.empty()) {
    out << ", properties: [";
    for (index_t i = 0; i < properties.size(); ++i) {
      out << "\"" << properties[i].first << "\": ";
      for (index_t j = 0; j < properties[i].second.size(); ++j) {
        out << "\"" << properties[i].second[j] << "\"";
        if (j < properties[i].second.size()-1) out << ":";
      }
      if (i < properties.size()-1) out << ", ";
      else out << "]";
    }
  }
  out << "}";
  return out.str();
}

string instruction::to_string() const {
  if (is_label) return label;
  ostringstream out;
  for (index_t i = 0; i < products.size(); ++i) {
    if (i > 0) out << ", ";
    out << products[i].to_string();
  }
  if (!products.empty()) out << " <- ";
  out << name << '/' << operation << ' ';
  for (index_t i = 0; i < ingredients.size(); ++i) {
    if (i > 0) out << ", ";
    out << ingredients[i].to_string();
  }
  return out.str();
}

string slurp_until(istream& in, char delim) {
  ostringstream out;
  char c;
  while (in >> c) {
    if (c == delim) {
      // drop the delim
      break;
    }
    out << c;
  }
  return out.str();
}

void dump_memory() {
  map<int, int> ordered(Memory.begin(), Memory.end());
  for (map<int, int>::iterator p = ordered.begin(); p != ordered.end(); ++p) {
    cout << p->first << ": " << p->second << '\n';
  }
}
:(before "End Includes")
#include <map>
using std::map;