From b0bf5321de2ba32f3b92c2faf6b7b68a06b6b432 Mon Sep 17 00:00:00 2001 From: "Kartik K. Agaram" Date: Sun, 24 Apr 2016 11:54:30 -0700 Subject: 2864 - replace all address:shared with just address Now that we no longer have non-shared addresses, we can just always track refcounts for all addresses. Phew! --- 034new.cc | 686 -------------------------------------------------------------- 1 file changed, 686 deletions(-) delete mode 100644 034new.cc (limited to '034new.cc') diff --git a/034new.cc b/034new.cc deleted file mode 100644 index ec30fee1..00000000 --- a/034new.cc +++ /dev/null @@ -1,686 +0,0 @@ -//: Creating space for new variables at runtime. - -//: Mu has two primitives for managing allocations: -//: - 'allocate' reserves a specified amount of space -//: - 'abandon' returns allocated space to be reused by future calls to 'allocate' -//: -//: In practice it's useful to let programs copy addresses anywhere they want, -//: but a prime source of (particularly security) bugs is accessing memory -//: after it's been abandoned. To avoid this, mu programs use a safer -//: primitive called 'new', which adds two features: -//: -//: - it takes a type rather than a size, to save you the trouble of -//: calculating sizes of different variables. -//: - it allocates an extra location where it tracks so-called 'reference -//: counts' or refcounts: the number of address variables in your program that -//: point to this allocation. The initial refcount of an allocation starts out -//: at 1 (the product of the 'new' instruction). When other variables are -//: copied from it the refcount is incremented. When a variable stops pointing -//: at it the refcount is decremented. When the refcount goes to 0 the -//: allocation is automatically abandoned. -//: -//: Mu programs guarantee you'll have no memory corruption bugs as long as you -//: use 'new' and never use 'allocate' or 'abandon'. However, they don't help -//: you at all to remember to abandon memory after you're done with it. To -//: minimize memory use, be sure to reset allocated addresses to 0 when you're -//: done with them. - -//: interlude { -//: To help you distinguish addresses that point at allocations, 'new' returns -//: type address:shared:___. Think of 'shared' as a generic container that -//: contains one extra field: the refcount. However, lookup operations will -//: transparently drop the 'shared' and access to the refcount. Copying -//: between shared and non-shared addresses is forbidden. -:(before "End Mu Types Initialization") -type_ordinal shared = put(Type_ordinal, "shared", Next_type_ordinal++); -get_or_insert(Type, shared).name = "shared"; -:(before "End Drop Address In lookup_memory(x)") -if (x.type->name == "shared" && x.value != 0) { - trace(9999, "mem") << "skipping refcount at " << x.value << end(); - x.set_value(x.value+1); // skip refcount - drop_from_type(x, "shared"); -} -:(before "End Drop Address In canonize_type(r)") -if (r.type->name == "shared") { - drop_from_type(r, "shared"); -} - -:(code) -void test_lookup_shared_address() { - reagent x("*x:address:shared:number"); - x.set_value(34); // unsafe - put(Memory, 34, 1000); - lookup_memory(x); - CHECK_TRACE_CONTENTS("mem: skipping refcount at 1000"); - CHECK_EQ(x.value, 1001); -} - -void test_lookup_shared_address_skip_zero() { - reagent x("*x:address:shared:number"); - x.set_value(34); // unsafe - put(Memory, 34, 0); - lookup_memory(x); - CHECK_TRACE_DOESNT_CONTAIN("mem: skipping refcount at 0"); - CHECK_EQ(x.value, 0); -} - -//: } end interlude - -:(scenarios run) -:(scenario new) -# call new two times with identical arguments; you should get back different results -def main [ - 1:address:shared:number/raw <- new number:type - 2:address:shared:number/raw <- new number:type - 3:boolean/raw <- equal 1:address:shared:number/raw, 2:address:shared:number/raw -] -+mem: storing 0 in location 3 - -:(before "End Globals") -const int Reserved_for_tests = 1000; -int Memory_allocated_until = Reserved_for_tests; -int Initial_memory_per_routine = 100000; -:(before "End Setup") -Memory_allocated_until = Reserved_for_tests; -Initial_memory_per_routine = 100000; -:(before "End routine Fields") -int alloc, alloc_max; -:(before "End routine Constructor") -alloc = Memory_allocated_until; -Memory_allocated_until += Initial_memory_per_routine; -alloc_max = Memory_allocated_until; -trace(9999, "new") << "routine allocated memory from " << alloc << " to " << alloc_max << end(); - -//:: 'new' takes a weird 'type' as its first ingredient; don't error on it -:(before "End Mu Types Initialization") -put(Type_ordinal, "type", 0); - -//:: typecheck 'new' instructions -:(before "End Primitive Recipe Declarations") -NEW, -:(before "End Primitive Recipe Numbers") -put(Recipe_ordinal, "new", NEW); -:(before "End Primitive Recipe Checks") -case NEW: { - const recipe& caller = get(Recipe, r); - if (inst.ingredients.empty() || SIZE(inst.ingredients) > 2) { - raise << maybe(caller.name) << "'new' requires one or two ingredients, but got " << to_original_string(inst) << '\n' << end(); - break; - } - // End NEW Check Special-cases - reagent type = inst.ingredients.at(0); - if (!is_mu_type_literal(type)) { - raise << maybe(caller.name) << "first ingredient of 'new' should be a type, but got " << type.original_string << '\n' << end(); - break; - } - if (inst.products.empty()) { - raise << maybe(caller.name) << "result of 'new' should never be ignored\n" << end(); - break; - } - if (!product_of_new_is_valid(inst)) { - raise << maybe(caller.name) << "product of 'new' has incorrect type: " << to_original_string(inst) << '\n' << end(); - break; - } - break; -} -:(code) -bool product_of_new_is_valid(const instruction& inst) { - reagent product = inst.products.at(0); - canonize_type(product); - if (!product.type || product.type->value != get(Type_ordinal, "address")) return false; - drop_from_type(product, "address"); - if (!product.type || product.type->value != get(Type_ordinal, "shared")) return false; - drop_from_type(product, "shared"); - if (SIZE(inst.ingredients) > 1) { - // array allocation - if (!product.type || product.type->value != get(Type_ordinal, "array")) return false; - drop_from_type(product, "array"); - } - reagent expected_product("x:"+inst.ingredients.at(0).name); - // End Post-processing(expected_product) When Checking 'new' - return types_strictly_match(product, expected_product); -} - -//:: translate 'new' to 'allocate' instructions that take a size instead of a type -:(after "Transform.push_back(check_instruction)") // check_instruction will guard against direct 'allocate' instructions below -Transform.push_back(transform_new_to_allocate); // idempotent - -:(code) -void transform_new_to_allocate(const recipe_ordinal r) { - trace(9991, "transform") << "--- convert 'new' to 'allocate' for recipe " << get(Recipe, r).name << end(); - for (int i = 0; i < SIZE(get(Recipe, r).steps); ++i) { - instruction& inst = get(Recipe, r).steps.at(i); - // Convert 'new' To 'allocate' - if (inst.name == "new") { - inst.operation = ALLOCATE; - string_tree* type_name = new string_tree(inst.ingredients.at(0).name); - // End Post-processing(type_name) When Converting 'new' - type_tree* type = new_type_tree(type_name); - inst.ingredients.at(0).set_value(size_of(type)); - trace(9992, "new") << "size of " << to_string(type_name) << " is " << inst.ingredients.at(0).value << end(); - delete type; - delete type_name; - } - } -} - -//:: implement 'allocate' based on size - -:(before "End Primitive Recipe Declarations") -ALLOCATE, -:(before "End Primitive Recipe Numbers") -put(Recipe_ordinal, "allocate", ALLOCATE); -:(before "End Primitive Recipe Implementations") -case ALLOCATE: { - // compute the space we need - int size = ingredients.at(0).at(0); - if (SIZE(ingredients) > 1) { - // array - trace(9999, "mem") << "array size is " << ingredients.at(1).at(0) << end(); - size = /*space for length*/1 + size*ingredients.at(1).at(0); - } - // include space for refcount - size++; - trace(9999, "mem") << "allocating size " << size << end(); -//? Total_alloc += size; -//? Num_alloc++; - // compute the region of memory to return - // really crappy at the moment - ensure_space(size); - const int result = Current_routine->alloc; - trace(9999, "mem") << "new alloc: " << result << end(); - // save result - products.resize(1); - products.at(0).push_back(result); - // initialize allocated space - for (int address = result; address < result+size; ++address) - put(Memory, address, 0); - // initialize array length - if (SIZE(current_instruction().ingredients) > 1) { - trace(9999, "mem") << "storing " << ingredients.at(1).at(0) << " in location " << result+/*skip refcount*/1 << end(); - put(Memory, result+/*skip refcount*/1, ingredients.at(1).at(0)); - } - // bump - Current_routine->alloc += size; - // no support for reclaiming memory - assert(Current_routine->alloc <= Current_routine->alloc_max); - break; -} - -//:: ensure we never call 'allocate' directly; its types are not checked -:(before "End Primitive Recipe Checks") -case ALLOCATE: { - raise << "never call 'allocate' directly'; always use 'new'\n" << end(); - break; -} - -//:: ensure we never call 'new' without translating it (unless we add special-cases later) -:(before "End Primitive Recipe Implementations") -case NEW: { - raise << "no implementation for 'new'; why wasn't it translated to 'allocate'? Please save a copy of your program and send it to Kartik.\n" << end(); - break; -} - -//? :(before "End Globals") -//? int Total_alloc = 0; -//? int Num_alloc = 0; -//? int Total_free = 0; -//? int Num_free = 0; -//? :(before "End Setup") -//? Total_alloc = Num_alloc = Total_free = Num_free = 0; -//? :(before "End Teardown") -//? cerr << Total_alloc << "/" << Num_alloc -//? << " vs " << Total_free << "/" << Num_free << '\n'; -//? cerr << SIZE(Memory) << '\n'; - -:(code) -void ensure_space(int size) { - if (size > Initial_memory_per_routine) { - tb_shutdown(); - cerr << "can't allocate " << size << " locations, that's too much compared to " << Initial_memory_per_routine << ".\n"; - exit(0); - } - if (Current_routine->alloc + size > Current_routine->alloc_max) { - // waste the remaining space and create a new chunk - Current_routine->alloc = Memory_allocated_until; - Memory_allocated_until += Initial_memory_per_routine; - Current_routine->alloc_max = Memory_allocated_until; - trace(9999, "new") << "routine allocated memory from " << Current_routine->alloc << " to " << Current_routine->alloc_max << end(); - } -} - -:(scenario new_initializes) -% Memory_allocated_until = 10; -% put(Memory, Memory_allocated_until, 1); -def main [ - 1:address:shared:number <- new number:type - 2:number <- copy *1:address:shared:number -] -+mem: storing 0 in location 2 - -:(scenario new_error) -% Hide_errors = true; -def main [ - 1:address:number/raw <- new number:type -] -+error: main: product of 'new' has incorrect type: 1:address:number/raw <- new number:type - -:(scenario new_array) -def main [ - 1:address:shared:array:number/raw <- new number:type, 5 - 2:address:shared:number/raw <- new number:type - 3:number/raw <- subtract 2:address:shared:number/raw, 1:address:shared:array:number/raw -] -+run: {1: ("address" "shared" "array" "number"), "raw": ()} <- new {number: "type"}, {5: "literal"} -+mem: array size is 5 -# don't forget the extra location for array size, and the second extra location for the refcount -+mem: storing 7 in location 3 - -:(scenario new_empty_array) -def main [ - 1:address:shared:array:number/raw <- new number:type, 0 - 2:address:shared:number/raw <- new number:type - 3:number/raw <- subtract 2:address:shared:number/raw, 1:address:shared:array:number/raw -] -+run: {1: ("address" "shared" "array" "number"), "raw": ()} <- new {number: "type"}, {0: "literal"} -+mem: array size is 0 -# one location for array size, and one for the refcount -+mem: storing 2 in location 3 - -//: If a routine runs out of its initial allocation, it should allocate more. -:(scenario new_overflow) -% Initial_memory_per_routine = 3; // barely enough room for point allocation below -def main [ - 1:address:shared:number/raw <- new number:type - 2:address:shared:point/raw <- new point:type # not enough room in initial page -] -+new: routine allocated memory from 1000 to 1003 -+new: routine allocated memory from 1003 to 1006 - -//:: A way to return memory, and to reuse reclaimed memory. -//: todo: custodians, etc. Following malloc/free is a temporary hack. - -:(scenario new_reclaim) -def main [ - 1:address:shared:number <- new number:type - 2:address:shared:number <- copy 1:address:shared:number # because 1 will get reset during abandon below - abandon 1:address:shared:number # unsafe - 3:address:shared:number <- new number:type # must be same size as abandoned memory to reuse - 4:boolean <- equal 2:address:shared:number, 3:address:shared:number -] -# both allocations should have returned the same address -+mem: storing 1 in location 4 - -:(before "End routine Fields") -map free_list; - -:(before "End Primitive Recipe Declarations") -ABANDON, -:(before "End Primitive Recipe Numbers") -put(Recipe_ordinal, "abandon", ABANDON); -:(before "End Primitive Recipe Checks") -case ABANDON: { - if (SIZE(inst.ingredients) != 1) { - raise << maybe(get(Recipe, r).name) << "'abandon' requires one ingredient, but got '" << to_original_string(inst) << "'\n" << end(); - break; - } - reagent types = inst.ingredients.at(0); - canonize_type(types); - if (!types.type || types.type->value != get(Type_ordinal, "address") || types.type->right->value != get(Type_ordinal, "shared")) { - raise << maybe(get(Recipe, r).name) << "first ingredient of 'abandon' should be an address:shared:___, but got " << inst.ingredients.at(0).original_string << '\n' << end(); - break; - } - break; -} -:(before "End Primitive Recipe Implementations") -case ABANDON: { - int address = ingredients.at(0).at(0); - trace(9999, "abandon") << "address to abandon is " << address << end(); - reagent types = current_instruction().ingredients.at(0); - trace(9999, "abandon") << "value of ingredient is " << types.value << end(); - canonize(types); - // lookup_memory without drop_one_lookup { - trace(9999, "abandon") << "value of ingredient after canonization is " << types.value << end(); - int address_location = types.value; - types.set_value(get_or_insert(Memory, types.value)+/*skip refcount*/1); - drop_from_type(types, "address"); - drop_from_type(types, "shared"); - // } - abandon(address, size_of(types)+/*refcount*/1); - // clear the address - trace(9999, "mem") << "resetting location " << address_location << end(); - put(Memory, address_location, 0); - break; -} - -:(code) -void abandon(int address, int size) { - trace(9999, "abandon") << "saving in free-list of size " << size << end(); -//? Total_free += size; -//? Num_free++; -//? cerr << "abandon: " << size << '\n'; - // clear memory - for (int curr = address; curr < address+size; ++curr) - put(Memory, curr, 0); - // append existing free list to address - put(Memory, address, get_or_insert(Current_routine->free_list, size)); - put(Current_routine->free_list, size, address); -} - -:(before "ensure_space(size)" following "case ALLOCATE") -if (get_or_insert(Current_routine->free_list, size)) { - trace(9999, "abandon") << "picking up space from free-list of size " << size << end(); - int result = get_or_insert(Current_routine->free_list, size); - trace(9999, "mem") << "new alloc from free list: " << result << end(); - put(Current_routine->free_list, size, get_or_insert(Memory, result)); - for (int curr = result+1; curr < result+size; ++curr) { - if (get_or_insert(Memory, curr) != 0) { - raise << maybe(current_recipe_name()) << "memory in free list was not zeroed out: " << curr << '/' << result << "; somebody wrote to us after free!!!\n" << end(); - break; // always fatal - } - } - if (SIZE(current_instruction().ingredients) > 1) - put(Memory, result+/*skip refcount*/1, ingredients.at(1).at(0)); - else - put(Memory, result, 0); - products.resize(1); - products.at(0).push_back(result); - break; -} - -:(scenario new_differing_size_no_reclaim) -def main [ - 1:address:shared:number <- new number:type - 2:address:shared:number <- copy 1:address:shared:number - abandon 1:address:shared:number - 3:address:shared:array:number <- new number:type, 2 # different size - 4:boolean <- equal 2:address:shared:number, 3:address:shared:array:number -] -# no reuse -+mem: storing 0 in location 4 - -:(scenario new_reclaim_array) -def main [ - 1:address:shared:array:number <- new number:type, 2 - 2:address:shared:array:number <- copy 1:address:shared:array:number - abandon 1:address:shared:array:number # unsafe - 3:address:shared:array:number <- new number:type, 2 - 4:boolean <- equal 2:address:shared:array:number, 3:address:shared:array:number -] -# reuse -+mem: storing 1 in location 4 - -:(scenario reset_on_abandon) -def main [ - 1:address:shared:number <- new number:type - abandon 1:address:shared:number -] -# reuse -+run: abandon {1: ("address" "shared" "number")} -+mem: resetting location 1 - -//:: Manage refcounts when copying addresses. - -:(scenario refcounts) -def main [ - 1:address:shared:number <- copy 1000/unsafe - 2:address:shared:number <- copy 1:address:shared:number - 1:address:shared:number <- copy 0 - 2:address:shared:number <- copy 0 -] -+run: {1: ("address" "shared" "number")} <- copy {1000: "literal", "unsafe": ()} -+mem: incrementing refcount of 1000: 0 -> 1 -+run: {2: ("address" "shared" "number")} <- copy {1: ("address" "shared" "number")} -+mem: incrementing refcount of 1000: 1 -> 2 -+run: {1: ("address" "shared" "number")} <- copy {0: "literal"} -+mem: decrementing refcount of 1000: 2 -> 1 -+run: {2: ("address" "shared" "number")} <- copy {0: "literal"} -+mem: decrementing refcount of 1000: 1 -> 0 -# the /unsafe corrupts memory but fortunately we won't be running any more 'new' in this scenario -+mem: automatically abandoning 1000 - -:(before "End write_memory(reagent x) Special-cases") -if (x.type->value == get(Type_ordinal, "address") - && x.type->right - && x.type->right->value == get(Type_ordinal, "shared")) { - // compute old address of x, as well as new address we want to write in - int old_address = get_or_insert(Memory, x.value); - assert(scalar(data)); - int new_address = data.at(0); - // decrement refcount of old address - if (old_address) { - int old_refcount = get_or_insert(Memory, old_address); - trace(9999, "mem") << "decrementing refcount of " << old_address << ": " << old_refcount << " -> " << (old_refcount-1) << end(); - put(Memory, old_address, old_refcount-1); - } - // perform the write - trace(9999, "mem") << "storing " << no_scientific(data.at(0)) << " in location " << x.value << end(); - put(Memory, x.value, new_address); - // increment refcount of new address - if (new_address) { - int new_refcount = get_or_insert(Memory, new_address); - assert(new_refcount >= 0); // == 0 only when new_address == old_address - trace(9999, "mem") << "incrementing refcount of " << new_address << ": " << new_refcount << " -> " << (new_refcount+1) << end(); - put(Memory, new_address, new_refcount+1); - } - // abandon old address if necessary - // do this after all refcount updates are done just in case old and new are identical - assert(old_address >= 0); - if (old_address == 0) return; - assert(get_or_insert(Memory, old_address) >= 0); - if (get_or_insert(Memory, old_address) > 0) return; - // lookup_memory without drop_one_lookup { - trace(9999, "mem") << "automatically abandoning " << old_address << end(); - trace(9999, "mem") << "computing size to abandon at " << x.value << end(); - x.set_value(old_address+/*skip refcount*/1); - drop_from_type(x, "address"); - drop_from_type(x, "shared"); - // } - abandon(old_address, size_of(x)+/*refcount*/1); - return; -} - -:(scenario refcounts_2) -def main [ - 1:address:shared:number <- new number:type - # over-writing one allocation with another - 1:address:shared:number <- new number:type - 1:address:shared:number <- copy 0 -] -+run: {1: ("address" "shared" "number")} <- new {number: "type"} -+mem: incrementing refcount of 1000: 0 -> 1 -+run: {1: ("address" "shared" "number")} <- new {number: "type"} -+mem: automatically abandoning 1000 - -:(scenario refcounts_3) -def main [ - 1:address:shared:number <- new number:type - # passing in addresses to recipes increments refcount - foo 1:address:shared:number - 1:address:shared:number <- copy 0 -] -def foo [ - 2:address:shared:number <- next-ingredient - # return does NOT yet decrement refcount; memory must be explicitly managed - 2:address:shared:number <- copy 0 -] -+run: {1: ("address" "shared" "number")} <- new {number: "type"} -+mem: incrementing refcount of 1000: 0 -> 1 -+run: {2: ("address" "shared" "number")} <- next-ingredient -+mem: incrementing refcount of 1000: 1 -> 2 -+run: {2: ("address" "shared" "number")} <- copy {0: "literal"} -+mem: decrementing refcount of 1000: 2 -> 1 -+run: {1: ("address" "shared" "number")} <- copy {0: "literal"} -+mem: decrementing refcount of 1000: 1 -> 0 -+mem: automatically abandoning 1000 - -:(scenario refcounts_4) -def main [ - 1:address:shared:number <- new number:type - # idempotent copies leave refcount unchanged - 1:address:shared:number <- copy 1:address:shared:number -] -+run: {1: ("address" "shared" "number")} <- new {number: "type"} -+mem: incrementing refcount of 1000: 0 -> 1 -+run: {1: ("address" "shared" "number")} <- copy {1: ("address" "shared" "number")} -+mem: decrementing refcount of 1000: 1 -> 0 -+mem: incrementing refcount of 1000: 0 -> 1 - -:(scenario refcounts_5) -def main [ - 1:address:shared:number <- new number:type - # passing in addresses to recipes increments refcount - foo 1:address:shared:number - # return does NOT yet decrement refcount; memory must be explicitly managed - 1:address:shared:number <- new number:type -] -def foo [ - 2:address:shared:number <- next-ingredient -] -+run: {1: ("address" "shared" "number")} <- new {number: "type"} -+mem: incrementing refcount of 1000: 0 -> 1 -+run: {2: ("address" "shared" "number")} <- next-ingredient -+mem: incrementing refcount of 1000: 1 -> 2 -+run: {1: ("address" "shared" "number")} <- new {number: "type"} -+mem: decrementing refcount of 1000: 2 -> 1 - -:(scenario refcounts_array) -def main [ - 1:number <- copy 30 - # allocate an array - 10:address:shared:array:number <- new number:type, 20 - 11:number <- copy 10:address:shared:array:number - # allocate another array in its place, implicitly freeing the previous allocation - 10:address:shared:array:number <- new number:type, 25 -] -+run: {10: ("address" "shared" "array" "number")} <- new {number: "type"}, {20: "literal"} -# abandoned array is of old size (20, not 25) -+abandon: saving in free-list of size 22 - -//:: Extend 'new' to handle a unicode string literal argument. - -:(scenario new_string) -def main [ - 1:address:shared:array:character <- new [abc def] - 2:character <- index *1:address:shared:array:character, 5 -] -# number code for 'e' -+mem: storing 101 in location 2 - -:(scenario new_string_handles_unicode) -def main [ - 1:address:shared:array:character <- new [a«c] - 2:number <- length *1:address:shared:array:character - 3:character <- index *1:address:shared:array:character, 1 -] -+mem: storing 3 in location 2 -# unicode for '«' -+mem: storing 171 in location 3 - -:(before "End NEW Check Special-cases") -if (is_literal_string(inst.ingredients.at(0))) break; -:(before "Convert 'new' To 'allocate'") -if (inst.name == "new" && is_literal_string(inst.ingredients.at(0))) continue; -:(after "case NEW" following "Primitive Recipe Implementations") - if (is_literal_string(current_instruction().ingredients.at(0))) { - products.resize(1); - products.at(0).push_back(new_mu_string(current_instruction().ingredients.at(0).name)); - trace(9999, "mem") << "new string alloc: " << products.at(0).at(0) << end(); - break; - } - -:(code) -int new_mu_string(const string& contents) { - // allocate an array just large enough for it - int string_length = unicode_length(contents); -//? Total_alloc += string_length+1; -//? Num_alloc++; - ensure_space(string_length+1); // don't forget the extra location for array size - // initialize string - int result = Current_routine->alloc; - // initialize refcount - put(Memory, Current_routine->alloc++, 0); - // store length - put(Memory, Current_routine->alloc++, string_length); - int curr = 0; - const char* raw_contents = contents.c_str(); - for (int i = 0; i < string_length; ++i) { - uint32_t curr_character; - assert(curr < SIZE(contents)); - tb_utf8_char_to_unicode(&curr_character, &raw_contents[curr]); - put(Memory, Current_routine->alloc, curr_character); - curr += tb_utf8_char_length(raw_contents[curr]); - ++Current_routine->alloc; - } - // mu strings are not null-terminated in memory - return result; -} - -//: stash recognizes strings - -:(scenario stash_string) -def main [ - 1:address:shared:array:character <- new [abc] - stash [foo:], 1:address:shared:array:character -] -+app: foo: abc - -:(before "End print Special-cases(reagent r, data)") -if (is_mu_string(r)) { - assert(scalar(data)); - return read_mu_string(data.at(0))+' '; -} - -:(scenario unicode_string) -def main [ - 1:address:shared:array:character <- new [♠] - stash [foo:], 1:address:shared:array:character -] -+app: foo: ♠ - -:(scenario stash_space_after_string) -def main [ - 1:address:shared:array:character <- new [abc] - stash 1:address:shared:array:character, [foo] -] -+app: abc foo - -//: Allocate more to routine when initializing a literal string -:(scenario new_string_overflow) -% Initial_memory_per_routine = 2; -def main [ - 1:address:shared:number/raw <- new number:type - 2:address:shared:array:character/raw <- new [a] # not enough room in initial page, if you take the array size into account -] -+new: routine allocated memory from 1000 to 1002 -+new: routine allocated memory from 1002 to 1004 - -//: helpers -:(code) -int unicode_length(const string& s) { - const char* in = s.c_str(); - int result = 0; - int curr = 0; - while (curr < SIZE(s)) { // carefully bounds-check on the string - // before accessing its raw pointer - ++result; - curr += tb_utf8_char_length(in[curr]); - } - return result; -} - -string read_mu_string(int address) { - if (address == 0) return ""; - address++; // skip refcount - int size = get_or_insert(Memory, address); - if (size == 0) return ""; - ostringstream tmp; - for (int curr = address+1; curr <= address+size; ++curr) { - tmp << to_unicode(static_cast(get_or_insert(Memory, curr))); - } - return tmp.str(); -} - -bool is_mu_type_literal(reagent r) { - return is_literal(r) && r.type && r.type->name == "type"; -} -- cgit 1.4.1-2-gfad0