From 71e4f3812982dba2efb471283d310224e8db363e Mon Sep 17 00:00:00 2001 From: "Kartik K. Agaram" Date: Wed, 3 Mar 2021 22:09:50 -0800 Subject: 7842 - new directory organization Baremetal is now the default build target and therefore has its sources at the top-level. Baremetal programs build using the phase-2 Mu toolchain that requires a Linux kernel. This phase-2 codebase which used to be at the top-level is now under the linux/ directory. Finally, the phase-2 toolchain, while self-hosting, has a way to bootstrap from a C implementation, which is now stored in linux/bootstrap. The bootstrap C implementation uses some literate programming tools that are now in linux/bootstrap/tools. So the whole thing has gotten inverted. Each directory should build one artifact and include the main sources (along with standard library). Tools used for building it are relegated to sub-directories, even though those tools are often useful in their own right, and have had lots of interesting programs written using them. A couple of things have gotten dropped in this process: - I had old ways to run on just a Linux kernel, or with a Soso kernel. No more. - I had some old tooling for running a single test at the cursor. I haven't used that lately. Maybe I'll bring it back one day. The reorg isn't done yet. Still to do: - redo documentation everywhere. All the README files, all other markdown, particularly vocabulary.md. - clean up how-to-run comments at the start of programs everywhere - rethink what to do with the html/ directory. Do we even want to keep supporting it? In spite of these shortcomings, all the scripts at the top-level, linux/ and linux/bootstrap are working. The names of the scripts also feel reasonable. This is a good milestone to take stock at. --- 412render-float-decimal.mu | 597 +++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 597 insertions(+) create mode 100644 412render-float-decimal.mu (limited to '412render-float-decimal.mu') diff --git a/412render-float-decimal.mu b/412render-float-decimal.mu new file mode 100644 index 00000000..7aaf8b3a --- /dev/null +++ b/412render-float-decimal.mu @@ -0,0 +1,597 @@ +# print out floats in decimal +# https://research.swtch.com/ftoa +# +# Basic idea: +# Ignoring sign, floating point numbers are represented as 1.mantissa * 2^exponent +# Therefore, to print a float in decimal, we need to: +# - compute its value without decimal point +# - convert to an array of decimal digits +# - print out the array while inserting the decimal point appropriately +# +# Basic complication: the computation generates numbers larger than an int can +# hold. We need a way to represent big ints. +# +# Key insight: use a representation for big ints that's close to what we need +# anyway, an array of decimal digits. +# +# Style note: we aren't creating a big int library here. The only operations +# we need are halving and doubling. Following the link above, it seems more +# comprehensible to keep these operations inlined so that we can track the +# position of the decimal point with dispatch. +# +# This approach turns out to be fast enough for most purposes. +# Optimizations, however, get wildly more complex. + +fn test-write-float-decimal-approximate-normal { + var s-storage: (stream byte 0x10) + var s/ecx: (addr stream byte) <- address s-storage + # 0.5 + var half/xmm0: float <- rational 1, 2 + write-float-decimal-approximate s, half, 3 + check-stream-equal s, "0.5", "F - test-write-float-decimal-approximate-normal 0.5" + # 0.25 + clear-stream s + var quarter/xmm0: float <- rational 1, 4 + write-float-decimal-approximate s, quarter, 3 + check-stream-equal s, "0.25", "F - test-write-float-decimal-approximate-normal 0.25" + # 0.75 + clear-stream s + var three-quarters/xmm0: float <- rational 3, 4 + write-float-decimal-approximate s, three-quarters, 3 + check-stream-equal s, "0.75", "F - test-write-float-decimal-approximate-normal 0.75" + # 0.125 + clear-stream s + var eighth/xmm0: float <- rational 1, 8 + write-float-decimal-approximate s, eighth, 3 + check-stream-equal s, "0.125", "F - test-write-float-decimal-approximate-normal 0.125" + # 0.0625; start using scientific notation + clear-stream s + var sixteenth/xmm0: float <- rational 1, 0x10 + write-float-decimal-approximate s, sixteenth, 3 + check-stream-equal s, "6.25e-2", "F - test-write-float-decimal-approximate-normal 0.0625" + # sqrt(2); truncate floats with lots of digits after the decimal but not too many before + clear-stream s + var two-f/xmm0: float <- rational 2, 1 + var sqrt-2/xmm0: float <- square-root two-f + write-float-decimal-approximate s, sqrt-2, 3 + check-stream-equal s, "1.414", "F - test-write-float-decimal-approximate-normal √2" +} + +# print whole integers without decimals +fn test-write-float-decimal-approximate-integer { + var s-storage: (stream byte 0x10) + var s/ecx: (addr stream byte) <- address s-storage + # 1 + var one-f/xmm0: float <- rational 1, 1 + write-float-decimal-approximate s, one-f, 3 + check-stream-equal s, "1", "F - test-write-float-decimal-approximate-integer 1" + # 2 + clear-stream s + var two-f/xmm0: float <- rational 2, 1 + write-float-decimal-approximate s, two-f, 3 + check-stream-equal s, "2", "F - test-write-float-decimal-approximate-integer 2" + # 10 + clear-stream s + var ten-f/xmm0: float <- rational 0xa, 1 + write-float-decimal-approximate s, ten-f, 3 + check-stream-equal s, "10", "F - test-write-float-decimal-approximate-integer 10" + # -10 + clear-stream s + var minus-ten-f/xmm0: float <- rational -0xa, 1 + write-float-decimal-approximate s, minus-ten-f, 3 + check-stream-equal s, "-10", "F - test-write-float-decimal-approximate-integer -10" + # 999 + clear-stream s + var minus-ten-f/xmm0: float <- rational 0x3e7, 1 + write-float-decimal-approximate s, minus-ten-f, 3 + check-stream-equal s, "999", "F - test-write-float-decimal-approximate-integer 1000" + # 1000 - start using scientific notation + clear-stream s + var minus-ten-f/xmm0: float <- rational 0x3e8, 1 + write-float-decimal-approximate s, minus-ten-f, 3 + check-stream-equal s, "1.00e3", "F - test-write-float-decimal-approximate-integer 1000" + # 100,000 + clear-stream s + var hundred-thousand/eax: int <- copy 0x186a0 + var hundred-thousand-f/xmm0: float <- convert hundred-thousand + write-float-decimal-approximate s, hundred-thousand-f, 3 + check-stream-equal s, "1.00e5", "F - test-write-float-decimal-approximate-integer 100,000" +} + +fn test-write-float-decimal-approximate-zero { + var s-storage: (stream byte 0x10) + var s/ecx: (addr stream byte) <- address s-storage + var zero: float + write-float-decimal-approximate s, zero, 3 + check-stream-equal s, "0", "F - test-write-float-decimal-approximate-zero" +} + +fn test-write-float-decimal-approximate-negative-zero { + var s-storage: (stream byte 0x10) + var s/ecx: (addr stream byte) <- address s-storage + var n: int + copy-to n, 0x80000000 + var negative-zero/xmm0: float <- reinterpret n + write-float-decimal-approximate s, negative-zero, 3 + check-stream-equal s, "-0", "F - test-write-float-decimal-approximate-negative-zero" +} + +fn test-write-float-decimal-approximate-infinity { + var s-storage: (stream byte 0x10) + var s/ecx: (addr stream byte) <- address s-storage + var n: int + # 0|11111111|00000000000000000000000 + # 0111|1111|1000|0000|0000|0000|0000|0000 + copy-to n, 0x7f800000 + var infinity/xmm0: float <- reinterpret n + write-float-decimal-approximate s, infinity, 3 + check-stream-equal s, "Inf", "F - test-write-float-decimal-approximate-infinity" +} + +fn test-write-float-decimal-approximate-negative-infinity { + var s-storage: (stream byte 0x10) + var s/ecx: (addr stream byte) <- address s-storage + var n: int + copy-to n, 0xff800000 + var negative-infinity/xmm0: float <- reinterpret n + write-float-decimal-approximate s, negative-infinity, 3 + check-stream-equal s, "-Inf", "F - test-write-float-decimal-approximate-negative-infinity" +} + +fn test-write-float-decimal-approximate-not-a-number { + var s-storage: (stream byte 0x10) + var s/ecx: (addr stream byte) <- address s-storage + var n: int + copy-to n, 0xffffffff # exponent must be all 1's, and mantissa must be non-zero + var nan/xmm0: float <- reinterpret n + write-float-decimal-approximate s, nan, 3 + check-stream-equal s, "NaN", "F - test-write-float-decimal-approximate-not-a-number" +} + +fn render-float-decimal screen: (addr screen), in: float, precision: int, x: int, y: int, color: int, background-color: int -> _/eax: int { + var s-storage: (stream byte 0x10) + var s/esi: (addr stream byte) <- address s-storage + write-float-decimal-approximate s, in, precision + var width/eax: int <- copy 0 + var height/ecx: int <- copy 0 + width, height <- screen-size screen + var result/eax: int <- draw-stream-rightward screen, s, x, width, y, color, background-color + return result +} + +# 'precision' controls the maximum width past which we resort to scientific notation +fn write-float-decimal-approximate out: (addr stream byte), in: float, precision: int { + # - special names + var bits/eax: int <- reinterpret in + compare bits, 0 + { + break-if-!= + write out, "0" + return + } + compare bits, 0x80000000 + { + break-if-!= + write out, "-0" + return + } + compare bits, 0x7f800000 + { + break-if-!= + write out, "Inf" + return + } + compare bits, 0xff800000 + { + break-if-!= + write out, "-Inf" + return + } + var exponent/ecx: int <- copy bits + exponent <- shift-right 0x17 # 23 bits of mantissa + exponent <- and 0xff + exponent <- subtract 0x7f + compare exponent, 0x80 + { + break-if-!= + write out, "NaN" + return + } + # - regular numbers + var sign/edx: int <- copy bits + sign <- shift-right 0x1f + { + compare sign, 1 + break-if-!= + append-byte out, 0x2d/minus + } + + # v = 1.mantissa (in base 2) << 0x17 + var v/ebx: int <- copy bits + v <- and 0x7fffff + v <- or 0x00800000 # insert implicit 1 + # e = exponent - 0x17 + var e/ecx: int <- copy exponent + e <- subtract 0x17 # move decimal place from before mantissa to after + + # initialize buffer with decimal representation of v + # unlike https://research.swtch.com/ftoa, no ascii here + var buf-storage: (array byte 0x7f) + var buf/edi: (addr array byte) <- address buf-storage + var n/eax: int <- decimal-digits v, buf + # I suspect we can do without reversing, but we'll follow https://research.swtch.com/ftoa + # closely for now. + reverse-digits buf, n + + # loop if e > 0 + { + compare e, 0 + break-if-<= + n <- double-array-of-decimal-digits buf, n + e <- decrement + loop + } + + var dp/edx: int <- copy n + + # loop if e < 0 + { + compare e, 0 + break-if->= + n, dp <- halve-array-of-decimal-digits buf, n, dp + e <- increment + loop + } + + _write-float-array-of-decimal-digits out, buf, n, dp, precision +} + +# store the decimal digits of 'n' into 'buf', units first +# n must be positive +fn decimal-digits n: int, _buf: (addr array byte) -> _/eax: int { + var buf/edi: (addr array byte) <- copy _buf + var i/ecx: int <- copy 0 + var curr/eax: int <- copy n + var curr-byte/edx: int <- copy 0 + { + compare curr, 0 + break-if-= + curr, curr-byte <- integer-divide curr, 0xa + var dest/ebx: (addr byte) <- index buf, i + copy-byte-to *dest, curr-byte + i <- increment + loop + } + return i +} + +fn reverse-digits _buf: (addr array byte), n: int { + var buf/esi: (addr array byte) <- copy _buf + var left/ecx: int <- copy 0 + var right/edx: int <- copy n + right <- decrement + { + compare left, right + break-if->= + { + var l-a/ecx: (addr byte) <- index buf, left + var r-a/edx: (addr byte) <- index buf, right + var l/ebx: byte <- copy-byte *l-a + var r/eax: byte <- copy-byte *r-a + copy-byte-to *l-a, r + copy-byte-to *r-a, l + } + left <- increment + right <- decrement + loop + } +} + +fn double-array-of-decimal-digits _buf: (addr array byte), _n: int -> _/eax: int { + var buf/edi: (addr array byte) <- copy _buf + # initialize delta + var delta/edx: int <- copy 0 + { + var curr/ebx: (addr byte) <- index buf, 0 + var tmp/eax: byte <- copy-byte *curr + compare tmp, 5 + break-if-< + delta <- copy 1 + } + # loop + var x/eax: int <- copy 0 + var i/ecx: int <- copy _n + i <- decrement + { + compare i, 0 + break-if-<= + # x += 2*buf[i] + { + var tmp/ecx: (addr byte) <- index buf, i + var tmp2/ecx: byte <- copy-byte *tmp + x <- add tmp2 + x <- add tmp2 + } + # x, buf[i+delta] = x/10, x%10 + { + var dest-index/ecx: int <- copy i + dest-index <- add delta + var dest/edi: (addr byte) <- index buf, dest-index + var next-digit/edx: int <- copy 0 + x, next-digit <- integer-divide x, 0xa + copy-byte-to *dest, next-digit + } + # + i <- decrement + loop + } + # final patch-up + var n/eax: int <- copy _n + compare delta, 1 + { + break-if-!= + var curr/ebx: (addr byte) <- index buf, 0 + var one/edx: int <- copy 1 + copy-byte-to *curr, one + n <- increment + } + return n +} + +fn halve-array-of-decimal-digits _buf: (addr array byte), _n: int, _dp: int -> _/eax: int, _/edx: int { + var buf/edi: (addr array byte) <- copy _buf + var n/eax: int <- copy _n + var dp/edx: int <- copy _dp + # initialize one side + { + # if buf[n-1]%2 == 0, break + var right-index/ecx: int <- copy n + right-index <- decrement + var right-a/ecx: (addr byte) <- index buf, right-index + var right/ecx: byte <- copy-byte *right-a + var right-int/ecx: int <- copy right + var remainder/edx: int <- copy 0 + { + var dummy/eax: int <- copy 0 + dummy, remainder <- integer-divide right-int, 2 + } + compare remainder, 0 + break-if-= + # buf[n] = 0 + var next-a/ecx: (addr byte) <- index buf, n + var zero/edx: byte <- copy 0 + copy-byte-to *next-a, zero + # n++ + n <- increment + } + # initialize the other + var delta/ebx: int <- copy 0 + var x/esi: int <- copy 0 + { + # if buf[0] >= 2, break + var left/ecx: (addr byte) <- index buf, 0 + var src/ecx: byte <- copy-byte *left + compare src, 2 + break-if->= + # delta, x = 1, buf[0] + delta <- copy 1 + x <- copy src + # n-- + n <- decrement + # dp-- + dp <- decrement + } + # loop + var i/ecx: int <- copy 0 + { + compare i, n + break-if->= + # x = x*10 + buf[i+delta] + { + var ten/edx: int <- copy 0xa + x <- multiply ten + var src-index/edx: int <- copy i + src-index <- add delta + var src-a/edx: (addr byte) <- index buf, src-index + var src/edx: byte <- copy-byte *src-a + x <- add src + } + # buf[i], x = x/2, x%2 + { + var quotient/eax: int <- copy 0 + var remainder/edx: int <- copy 0 + quotient, remainder <- integer-divide x, 2 + x <- copy remainder + var dest/edx: (addr byte) <- index buf, i + copy-byte-to *dest, quotient + } + # + i <- increment + loop + } + return n, dp +} + +fn _write-float-array-of-decimal-digits out: (addr stream byte), _buf: (addr array byte), n: int, dp: int, precision: int { + var buf/edi: (addr array byte) <- copy _buf + { + compare dp, 0 + break-if->= + _write-float-array-of-decimal-digits-in-scientific-notation out, buf, n, dp, precision + return + } + { + var dp2/eax: int <- copy dp + compare dp2, precision + break-if-<= + _write-float-array-of-decimal-digits-in-scientific-notation out, buf, n, dp, precision + return + } + { + compare dp, 0 + break-if-!= + append-byte out, 0x30/0 + } + var i/eax: int <- copy 0 + # bounds = min(n, dp+3) + var limit/edx: int <- copy dp + limit <- add 3 + { + compare limit, n + break-if-<= + limit <- copy n + } + { + compare i, limit + break-if->= + # print '.' if necessary + compare i, dp + { + break-if-!= + append-byte out, 0x2e/decimal-point + } + var curr-a/ecx: (addr byte) <- index buf, i + var curr/ecx: byte <- copy-byte *curr-a + var curr-int/ecx: int <- copy curr + curr-int <- add 0x30/0 + append-byte out, curr-int + # + i <- increment + loop + } +} + +fn _write-float-array-of-decimal-digits-in-scientific-notation out: (addr stream byte), _buf: (addr array byte), n: int, dp: int, precision: int { + var buf/edi: (addr array byte) <- copy _buf + var i/eax: int <- copy 0 + { + compare i, n + break-if->= + compare i, precision + break-if->= + compare i, 1 + { + break-if-!= + append-byte out, 0x2e/decimal-point + } + var curr-a/ecx: (addr byte) <- index buf, i + var curr/ecx: byte <- copy-byte *curr-a + var curr-int/ecx: int <- copy curr + curr-int <- add 0x30/0 + append-byte out, curr-int + # + i <- increment + loop + } + append-byte out, 0x65/e + decrement dp + write-int32-decimal out, dp +} + +# follows the structure of write-float-decimal-approximate +# 'precision' controls the maximum width past which we resort to scientific notation +fn float-size in: float, precision: int -> _/eax: int { + # - special names + var bits/eax: int <- reinterpret in + compare bits, 0 + { + break-if-!= + return 1 # for "0" + } + compare bits, 0x80000000 + { + break-if-!= + return 2 # for "-0" + } + compare bits, 0x7f800000 + { + break-if-!= + return 3 # for "Inf" + } + compare bits, 0xff800000 + { + break-if-!= + return 4 # for "-Inf" + } + var exponent/ecx: int <- copy bits + exponent <- shift-right 0x17 # 23 bits of mantissa + exponent <- and 0xff + exponent <- subtract 0x7f + compare exponent, 0x80 + { + break-if-!= + return 3 # for "NaN" + } + # - regular numbers + # v = 1.mantissa (in base 2) << 0x17 + var v/ebx: int <- copy bits + v <- and 0x7fffff + v <- or 0x00800000 # insert implicit 1 + # e = exponent - 0x17 + var e/ecx: int <- copy exponent + e <- subtract 0x17 # move decimal place from before mantissa to after + + # initialize buffer with decimal representation of v + var buf-storage: (array byte 0x7f) + var buf/edi: (addr array byte) <- address buf-storage + var n/eax: int <- decimal-digits v, buf + reverse-digits buf, n + + # loop if e > 0 + { + compare e, 0 + break-if-<= + n <- double-array-of-decimal-digits buf, n + e <- decrement + loop + } + + var dp/edx: int <- copy n + + # loop if e < 0 + { + compare e, 0 + break-if->= + n, dp <- halve-array-of-decimal-digits buf, n, dp + e <- increment + loop + } + + compare dp, 0 + { + break-if->= + return 8 # hacky for scientific notation + } + { + var dp2/eax: int <- copy dp + compare dp2, precision + break-if-<= + return 8 # hacky for scientific notation + } + + # result = min(n, dp+3) + var result/ecx: int <- copy dp + result <- add 3 + { + compare result, n + break-if-<= + result <- copy n + } + + # account for decimal point + compare dp, n + { + break-if->= + result <- increment + } + + # account for sign + var sign/edx: int <- reinterpret in + sign <- shift-right 0x1f + { + compare sign, 1 + break-if-!= + result <- increment + } + return result +} -- cgit 1.4.1-2-gfad0