// So far instructions can only contain linear lists of properties. Now we add // support for more complex trees of properties in dilated reagents. This will // come in handy later for expressing complex types, like "a dictionary from // (address to array of charaters) to (list of numbers)". // // Type trees aren't as general as s-expressions even if they look like them: // the first element of a type tree is always an atom, and it can never be // dotted (right->right->right->...->right is always NULL). // // For now you can't use the simpler 'colon-based' representation inside type // trees. Once you start typing parens, keep on typing parens. void test_dilated_reagent_with_nested_brackets() { load( "def main [\n" " {1: number, foo: (bar (baz quux))} <- copy 34\n" "]\n" ); CHECK_TRACE_CONTENTS( "parse: product: {1: \"number\", \"foo\": (\"bar\" (\"baz\" \"quux\"))}\n" ); } :(before "End Parsing Dilated Reagent Property(value)") value = parse_string_tree(value); :(before "End Parsing Dilated Reagent Type Property(type_names)") type_names = parse_string_tree(type_names); :(code) string_tree* parse_string_tree(string_tree* s) { assert(s->atom); if (!starts_with(s->value, "(")) return s; string_tree* result = parse_string_tree(s->value); delete s; return result; } string_tree* parse_string_tree(const string& s) { istringstream in(s); in >> std::noskipws; return parse_string_tree(in); } string_tree* parse_string_tree(istream& in) { skip_whitespace_but_not_newline(in); if (!has_data(in)) return NULL; if (in.peek() == ')') { in.get(); return NULL; } if (in.peek() != '(') { string s = next_word(in); if (s.empty()) { assert(!has_data(in)); raise << "incomplete string tree at end of file (0)\n" << end(); return NULL; } string_tree* result = new string_tree(s); return result; } in.get(); // skip '(' string_tree* result = NULL; string_tree** curr = &result; while (true) { skip_whitespace_but_not_newline(in); assert(has_data(in)); if (in.peek() == ')') break; *curr = new string_tree(NULL, NULL); if (in.peek() == '(') { (*curr)->left = parse_string_tree(in); } else { string s = next_word(in); if (s.empty()) { assert(!has_data(in)); raise << "incomplete string tree at end of file (1)\n" << end(); return NULL; } (*curr)->left = new string_tree(s); } curr = &(*curr)->right; } in.get(); // skip ')' assert(*curr == NULL); return result; } void test_dilated_reagent_with_type_tree() { Hide_errors = true; // 'map' isn't defined yet load( "def main [\n" " {1: (foo (address array character) (bar number))} <- copy 34\n" "]\n" "container foo [\n" "]\n" "container bar [\n" "]\n" ); CHECK_TRACE_CONTENTS( "parse: product: {1: (\"foo\" (\"address\" \"array\" \"character\") (\"bar\" \"number\"))}\n" ); } void test_dilated_empty_tree() { load( "def main [\n" " {1: number, foo: ()} <- copy 34\n" "]\n" ); CHECK_TRACE_CONTENTS( "parse: product: {1: \"number\", \"foo\": ()}\n" ); } void test_dilated_singleton_tree() { load( "def main [\n" " {1: number, foo: (bar)} <- copy 34\n" "]\n" ); CHECK_TRACE_CONTENTS( "parse: product: {1: \"number\", \"foo\": (\"bar\")}\n" ); }