//: Phase 3: Start running a loaded and transformed recipe. //: //: The process of running Mu code: //: load -> transform -> run //: //: So far we've seen recipes as lists of instructions, and instructions point //: at other recipes. To kick things off Mu needs to know how to run certain //: 'primitive' recipes. That will then give the ability to run recipes //: containing these primitives. //: //: This layer defines a skeleton with just two primitive recipes: IDLE which //: does nothing, and COPY, which can copy numbers from one memory location to //: another. Later layers will add more primitives. :(scenario copy_literal) def main [ 1:num <- copy 23 ] +run: {1: "number"} <- copy {23: "literal"} +mem: storing 23 in location 1 :(scenario copy) def main [ 1:num <- copy 23 2:num <- copy 1:num ] +run: {2: "number"} <- copy {1: "number"} +mem: location 1 is 23 +mem: storing 23 in location 2 :(scenario copy_multiple) def main [ 1:num, 2:num <- copy 23, 24 ] +mem: storing 23 in location 1 +mem: storing 24 in location 2 :(before "End Types") // Book-keeping while running a recipe. //: Later layers will replace this to support running multiple routines at once. struct routine { recipe_ordinal running_recipe; int running_step_index; routine(recipe_ordinal r) :running_recipe(r), running_step_index(0) {} bool completed() const; const vector& steps() const; }; :(before "End Globals") routine* Current_routine = NULL; map Instructions_running; map Locations_read; map Locations_read_by_instruction; :(before "End Setup") Current_routine = NULL; :(code) void run(const recipe_ordinal r) { routine rr(r); Current_routine = &rr; run_current_routine(); Current_routine = NULL; } void run_current_routine() { while (should_continue_running(Current_routine)) { // beware: later layers modify Current_routine here // Running One Instruction if (current_instruction().is_label) { ++current_step_index(); continue; } trace(Initial_callstack_depth + Trace_stream->callstack_depth, "run") << to_string(current_instruction()) << end(); if (get_or_insert(Memory, 0) != 0) { raise << "something wrote to location 0; this should never happen\n" << end(); put(Memory, 0, 0); } // read all ingredients from memory, each potentially spanning multiple locations vector > ingredients; if (should_copy_ingredients()) { for (int i = 0; i < SIZE(current_instruction().ingredients); ++i) ingredients.push_back(read_memory(current_instruction().ingredients.at(i))); } // instructions below will write to 'products' vector > products; switch (current_instruction().operation) { // Primitive Recipe Implementations case COPY: { copy(ingredients.begin(), ingredients.end(), inserter(products, products.begin())); break; } // End Primitive Recipe Implementations default: { cout << "not a primitive op: " << current_instruction().operation << '\n'; } } // Write Products of Instruction if (SIZE(products) < SIZE(current_instruction().products)) { raise << SIZE(products) << " vs " << SIZE(current_instruction().products) << ": failed to write to all products! " << to_original_string(current_instruction()) << '\n' << end(); } else { for (int i = 0; i < SIZE(current_instruction().products); ++i) write_memory(current_instruction().products.at(i), products.at(i)); } // End Write Products of Instruction // End Running One Instruction finish_instruction:; ++current_step_index(); } stop_running_current_routine:; } bool should_continue_running(const routine* current_routine) { assert(current_routine == Current_routine); // argument passed in just to make caller readable above return !Current_routine->completed(); } bool should_copy_ingredients() { // End should_copy_ingredients Special-cases return true; } //: Some helpers. //: We'll need to override these later as we change the definition of routine. //: Important that they return referrences into the routine. int& current_step_index() { return Current_routine->running_step_index; } const string& current_recipe_name() { return get(Recipe, Current_routine->running_recipe).name; } const recipe& current_recipe() { return get(Recipe, Current_routine->running_recipe); } const instruction& current_instruction() { return get(Recipe, Current_routine->running_recipe).steps.at(Current_routine->running_step_index); } bool routine::completed() const { return running_step_index >= SIZE(get(Recipe, running_recipe).steps); } const vector& routine::steps() const { return get(Recipe, running_recipe).steps; } //:: Startup flow //: Step 1: load all .mu files with numeric prefixes (in order) :(before "End Load Recipes") // Load Mu Prelude //? Save_trace = true; //? START_TRACING_UNTIL_END_OF_SCOPE; load_file_or_directory("core.mu"); //? DUMP(""); //? exit(0); //: Step 2: load any .mu files provided at the commandline :(before "End Commandline Parsing") // Check For .mu Files //? START_TRACING_UNTIL_END_OF_SCOPE if (argc > 1) { // skip argv[0] ++argv; --argc; while (argc > 0) { // ignore argv past '--'; that's commandline args for 'main' if (string(*argv) == "--") break; if (starts_with(*argv, "--")) cerr << "treating " << *argv << " as a file rather than an option\n"; load_file_or_directory(*argv); --argc; ++argv; } if (Run_tests) Recipe.erase(get(Recipe_ordinal, "main")); } transform_all(); //? DUMP(""); //? exit(0); if (Trace_errors) return 1; save_snapshots(); //: Step 3: if we aren't running tests, locate a recipe called 'main' and //: start running it. :(before "End Main") if (!Run_tests && contains_key(Recipe_ordinal, "main") && contains_key(Recipe, get(Recipe_ordinal, "main"))) { // Running Main setup(); //? Save_trace = true; if (Start_tracing) Trace_stream = new trace_stream; trace(9990, "run") << "=== Starting to run" << end(); assert(Num_calls_to_transform_all == 1); run_main(argc, argv); teardown(); } :(code) void run_main(int argc, char* argv[]) { recipe_ordinal r = get(Recipe_ordinal, "main"); if (r) run(r); } //: By default we don't maintain the trace while running main because its //: overheads can grow rapidly. However, it's useful when debugging. :(before "End Globals") bool Start_tracing = false; :(before "End Commandline Options(*arg)") else if (is_equal(*arg, "--trace")) { Start_tracing = true; } :(code) void dump_profile() { for (map::iterator p = Instructions_running.begin(); p != Instructions_running.end(); ++p) { cerr << p->first << ": " << p->second << '\n'; } cerr << "== locations read\n"; for (map::iterator p = Locations_read.begin(); p != Locations_read.end(); ++p) { cerr << p->first << ": " << p->second << '\n'; } cerr << "== locations read by instruction\n"; for (map::iterator p = Locations_read_by_instruction.begin(); p != Locations_read_by_instruction.end(); ++p) { cerr << p->first << ": " << p->second << '\n'; } } :(before "End One-time Setup") //? atexit(dump_profile); :(code) void cleanup_main() { if (Save_trace && Trace_stream) { ofstream fout("interactive"); fout << Trace_stream->readable_contents(""); fout.close(); } if (Trace_stream) delete Trace_stream, Trace_stream = NULL; } :(before "End One-time Setup") atexit(cleanup_main); :(code) void load_file_or_directory(string filename) { if (is_directory(filename)) { load_all(filename); return; } ifstream fin(filename.c_str()); if (!fin) { cerr << "no such file '" << filename << "'\n" << end(); // don't raise, just warn. just in case it's just a name for a scenario to run. return; } trace(9990, "load") << "=== " << filename << end(); load(fin); fin.close(); } bool is_directory(string path) { struct stat info; if (stat(path.c_str(), &info)) return false; // error return info.st_mode & S_IFDIR; } void load_all(string dir) { dirent** files; int num_files = scandir(dir.c_str(), &files, NULL, alphasort); for (int i = 0; i < num_files; ++i) { string curr_file = files[i]->d_name; if (isdigit(curr_file.at(0))) load_file_or_directory(dir+'/'+curr_file); free(files[i]); files[i] = NULL; } free(files); } :(before "End Includes") #include #include //:: Reading from memory, writing to memory. :(code) vector read_memory(reagent/*copy*/ x) { // Begin Preprocess read_memory(x) vector result; if (is_literal(x)) { result.push_back(x.value); return result; } // End Preprocess read_memory(x) int size = size_of(x); for (int offset = 0; offset < size; ++offset) { double val = get_or_insert(Memory, x.value+offset); trace(9999, "mem") << "location " << x.value+offset << " is " << no_scientific(val) << end(); result.push_back(val); } return result; } void write_memory(reagent/*copy*/ x, const vector& data) { assert(Current_routine); // run-time only // Begin Preprocess write_memory(x, data) if (!x.type) { raise << "can't write to '" << to_string(x) << "'; no type\n" << end(); return; } if (is_dummy(x)) return; if (is_literal(x)) return; // End Preprocess write_memory(x, data) if (x.value == 0) { raise << "can't write to location 0 in '" << to_original_string(current_instruction()) << "'\n" << end(); return; } if (size_mismatch(x, data)) { raise << maybe(current_recipe_name()) << "size mismatch in storing to '" << x.original_string << "' (" << size_of(x) << " vs " << SIZE(data) << ") at '" << to_original_string(current_instruction()) << "'\n" << end(); return; } // End write_memory(x) Special-cases for (int offset = 0; offset < SIZE(data); ++offset) { assert(x.value+offset > 0); trace(9999, "mem") << "storing " << no_scientific(data.at(offset)) << " in location " << x.value+offset << end(); put(Memory, x.value+offset, data.at(offset)); } } :(code) int size_of(const reagent& r) { if (!r.type) return 0; // End size_of(reagent r) Special-cases return size_of(r.type); } int size_of(const type_tree* type) { if (!type) return 0; // End size_of(type) Special-cases return 1; } bool size_mismatch(const reagent& x, const vector& data) { if (!x.type) return true; // End size_mismatch(x) Special-cases //? if (size_of(x) != SIZE(data)) cerr << size_of(x) << " vs " << SIZE(data) << '\n'; return size_of(x) != SIZE(data); } bool is_literal(const reagent& r) { return is_literal(r.type); } bool is_literal(const type_tree* type) { if (!type) return false; if (!type->atom) return false; return type->value == 0; } bool scalar(const vector& x) { return SIZE(x) == 1; } bool scalar(const vector& x) { return SIZE(x) == 1; } // helper for tests void run(const string& form) { vector tmp = load(form); transform_all(); if (tmp.empty()) return; if (trace_count("error") > 0) return; // if a test defines main, it probably wants to start there regardless of // definition order if (contains_key(Recipe, get(Recipe_ordinal, "main"))) run(get(Recipe_ordinal, "main")); else run(tmp.front()); } :(scenario run_label) def main [ +foo 1:num <- copy 23 2:num <- copy 1:num ] +run: {1: "number"} <- copy {23: "literal"} +run: {2: "number"} <- copy {1: "number"} -run: +foo :(scenario run_dummy) def main [ _ <- copy 0 ] +run: _ <- copy {0: "literal"} :(scenario write_to_0_disallowed) % Hide_errors = true; def main [ 0:num <- copy 34 ] -mem: storing 34 in location 0 //: Mu is robust to various combinations of commas and spaces. You just have //: to put spaces around the '<-'. :(scenario comma_without_space) def main [ 1:num, 2:num <- copy 2,2 ] +mem: storing 2 in location 1 :(scenario space_without_comma) def main [ 1:num, 2:num <- copy 2 2 ] +mem: storing 2 in location 1 :(scenario comma_before_space) def main [ 1:num, 2:num <- copy 2, 2 ] +mem: storing 2 in location 1 :(scenario comma_after_space) def main [ 1:num, 2:num <- copy 2 ,2 ] +mem: storing 2 in location 1