//: Phase 3: Start running a loaded and transformed recipe. //: //: So far we've seen recipes as lists of instructions, and instructions point //: at other recipes. To kick things off mu needs to know how to run certain //: 'primitive' recipes. That will then give the ability to run recipes //: containing these primitives. //: //: This layer defines a skeleton with just two primitive recipes: IDLE which //: does nothing, and COPY, which can copy numbers from one memory location to //: another. Later layers will add more primitives. :(scenario copy_literal) recipe main [ 1:integer <- copy 23:literal ] +run: instruction main/0 +run: ingredient 0 is 23 +mem: storing 23 in location 1 :(scenario copy) recipe main [ 1:integer <- copy 23:literal 2:integer <- copy 1:integer ] +run: instruction main/1 +run: ingredient 0 is 1 +mem: location 1 is 23 +mem: storing 23 in location 2 :(before "End Types") // Book-keeping while running a recipe. //: Later layers will change this. struct routine { recipe_number running_recipe; index_t running_step_index; routine(recipe_number r) :running_recipe(r), running_step_index(0) {} bool completed() const; }; :(before "End Globals") routine* Current_routine = NULL; :(code) void run(recipe_number r) { routine rr(r); Current_routine = &rr; run_current_routine(); } void run_current_routine() { // curly on a separate line, because later layers will modify header while (!Current_routine->completed()) // later layers will modify condition { // Running One Instruction. if (current_instruction().is_label) { ++current_step_index(); continue; } trace("run") << "instruction " << current_recipe_name() << '/' << current_step_index(); trace("run") << current_instruction().to_string(); //? trace("run") << Memory[1033] << '\n'; //? 1 //? cout << "operation " << current_instruction().operation << '\n'; //? 3 switch (current_instruction().operation) { // Primitive Recipe Implementations case COPY: { trace("run") << "ingredient 0 is " << current_instruction().ingredients[0].name; vector data = read_memory(current_instruction().ingredients[0]); write_memory(current_instruction().products[0], data); break; } // End Primitive Recipe Implementations default: { cout << "not a primitive op: " << current_instruction().operation << '\n'; } } ++current_step_index(); } } //: Some helpers. //: We'll need to override these later as we change the definition of routine. //: Important that they return referrences into the routine. inline index_t& current_step_index() { return Current_routine->running_step_index; } inline const string& current_recipe_name() { return Recipe[Current_routine->running_recipe].name; } inline const instruction& current_instruction() { return Recipe[Current_routine->running_recipe].steps[Current_routine->running_step_index]; } inline bool routine::completed() const { return running_step_index >= Recipe[running_recipe].steps.size(); } :(before "End Commandline Parsing") if (argc > 1) { for (int i = 1; i < argc; ++i) { load_permanently(argv[i]); } } :(before "End Main") if (!Run_tests) { setup(); Trace_stream = new trace_stream; //? Trace_stream->dump_layer = "all"; //? 2 transform_all(); recipe_number r = Recipe_number[string("main")]; //? Trace_stream->dump_layer = "all"; //? 1 if (r) run(r); //? dump_memory(); //? 1 teardown(); } :(code) void load_permanently(string filename) { ifstream fin(filename.c_str()); if (!fin) { raise << "no such file " << filename << '\n'; return; } fin >> std::noskipws; load(fin); transform_all(); fin.close(); // freeze everything so it doesn't get cleared by tests recently_added_recipes.clear(); recently_added_types.clear(); } //:: On startup, load everything in core.mu :(before "End Load Recipes") load_permanently("core.mu"); :(code) // helper for tests void run(string form) { vector tmp = load(form); if (tmp.empty()) return; transform_all(); run(tmp.front()); } //:: Reading from memory, writing to memory. vector read_memory(reagent x) { //? cout << "read_memory: " << x.to_string() << '\n'; //? 1 vector result; if (isa_literal(x)) { result.push_back(x.value); return result; } index_t base = x.value; size_t size = size_of(x); for (index_t offset = 0; offset < size; ++offset) { int val = Memory[base+offset]; trace("mem") << "location " << base+offset << " is " << val; result.push_back(val); } return result; } void write_memory(reagent x, vector data) { if (is_dummy(x)) return; index_t base = x.value; if (size_of(x) != data.size()) raise << "size mismatch in storing to " << x.to_string() << '\n'; for (index_t offset = 0; offset < data.size(); ++offset) { trace("mem") << "storing " << data[offset] << " in location " << base+offset; Memory[base+offset] = data[offset]; } } :(code) size_t size_of(const reagent& r) { return size_of(r.types); } size_t size_of(const vector& types) { // End size_of(types) Cases return 1; } bool is_dummy(const reagent& x) { return x.name == "_"; } bool isa_literal(const reagent& r) { return r.types.size() == 1 && r.types[0] == 0; } :(scenario run_label) recipe main [ +foo 1:integer <- copy 23:literal 2:integer <- copy 1:integer ] +run: instruction main/1 +run: instruction main/2 -run: instruction main/0 :(scenario run_dummy) recipe main [ _ <- copy 0:literal ] +run: instruction main/0