//: Arithmetic primitives :(before "End Primitive Recipe Declarations") ADD, :(before "End Primitive Recipe Numbers") Recipe_ordinal["add"] = ADD; :(before "End Primitive Recipe Checks") case ADD: { // primary goal of these checks is to forbid address arithmetic for (long long int i = 0; i < SIZE(inst.ingredients); ++i) { if (!is_mu_number(inst.ingredients.at(i))) { raise << Recipe[r].name << ": 'add' requires number ingredients, but got " << inst.ingredients.at(i).original_string << '\n' << end(); goto finish_checking_instruction; } } if (SIZE(inst.products) > 1) { raise << Recipe[r].name << ": 'add' yields exactly one product in '" << inst.to_string() << "'\n" << end(); break; } if (!inst.products.empty() && !is_dummy(inst.products.at(0)) && !is_mu_number(inst.products.at(0))) { raise << Recipe[r].name << ": 'add' should yield a number, but got " << inst.products.at(0).original_string << '\n' << end(); break; } break; } :(before "End Primitive Recipe Implementations") case ADD: { double result = 0; for (long long int i = 0; i < SIZE(ingredients); ++i) { result += ingredients.at(i).at(0); } products.resize(1); products.at(0).push_back(result); break; } :(scenario add_literal) recipe main [ 1:number <- add 23, 34 ] +mem: storing 57 in location 1 :(scenario add) recipe main [ 1:number <- copy 23 2:number <- copy 34 3:number <- add 1:number, 2:number ] +mem: storing 57 in location 3 :(scenario add_multiple) recipe main [ 1:number <- add 3, 4, 5 ] +mem: storing 12 in location 1 :(scenario add_checks_type) % Hide_warnings = true; recipe main [ 1:number <- add 2:boolean, 1 ] +warn: main: 'add' requires number ingredients, but got 2:boolean :(scenario add_checks_return_type) % Hide_warnings = true; recipe main [ 1:address:number <- add 2, 2 ] +warn: main: 'add' should yield a number, but got 1:address:number :(before "End Primitive Recipe Declarations") SUBTRACT, :(before "End Primitive Recipe Numbers") Recipe_ordinal["subtract"] = SUBTRACT; :(before "End Primitive Recipe Checks") case SUBTRACT: { if (inst.ingredients.empty()) { raise << Recipe[r].name << ": 'subtract' has no ingredients\n" << end(); break; } for (long long int i = 0; i < SIZE(inst.ingredients); ++i) { if (is_raw(inst.ingredients.at(i))) continue; // permit address offset computations in tests if (!is_mu_number(inst.ingredients.at(i))) { raise << Recipe[r].name << ": 'subtract' requires number ingredients, but got " << inst.ingredients.at(i).original_string << '\n' << end(); goto finish_checking_instruction; } } if (SIZE(inst.products) > 1) { raise << Recipe[r].name << ": 'subtract' yields exactly one product in '" << inst.to_string() << "'\n" << end(); break; } if (!inst.products.empty() && !is_dummy(inst.products.at(0)) && !is_mu_number(inst.products.at(0))) { raise << Recipe[r].name << ": 'subtract' should yield a number, but got " << inst.products.at(0).original_string << '\n' << end(); break; } break; } :(before "End Primitive Recipe Implementations") case SUBTRACT: { double result = ingredients.at(0).at(0); for (long long int i = 1; i < SIZE(ingredients); ++i) result -= ingredients.at(i).at(0); products.resize(1); products.at(0).push_back(result); break; } :(scenario subtract_literal) recipe main [ 1:number <- subtract 5, 2 ] +mem: storing 3 in location 1 :(scenario subtract) recipe main [ 1:number <- copy 23 2:number <- copy 34 3:number <- subtract 1:number, 2:number ] +mem: storing -11 in location 3 :(scenario subtract_multiple) recipe main [ 1:number <- subtract 6, 3, 2 ] +mem: storing 1 in location 1 :(before "End Primitive Recipe Declarations") MULTIPLY, :(before "End Primitive Recipe Numbers") Recipe_ordinal["multiply"] = MULTIPLY; :(before "End Primitive Recipe Checks") case MULTIPLY: { for (long long int i = 0; i < SIZE(inst.ingredients); ++i) { if (!is_mu_number(inst.ingredients.at(i))) { raise << Recipe[r].name << ": 'add' requires number ingredients, but got " << inst.ingredients.at(i).original_string << '\n' << end(); goto finish_checking_instruction; } } if (SIZE(inst.products) > 1) { raise << Recipe[r].name << ": 'multiply' yields exactly one product in '" << inst.to_string() << "'\n" << end(); break; } if (!inst.products.empty() && !is_dummy(inst.products.at(0)) && !is_mu_number(inst.products.at(0))) { raise << Recipe[r].name << ": 'multiply' should yield a number, but got " << inst.products.at(0).original_string << '\n' << end(); break; } break; } :(before "End Primitive Recipe Implementations") case MULTIPLY: { double result = 1; for (long long int i = 0; i < SIZE(ingredients); ++i) { result *= ingredients.at(i).at(0); } products.resize(1); products.at(0).push_back(result); break; } :(scenario multiply_literal) recipe main [ 1:number <- multiply 2, 3 ] +mem: storing 6 in location 1 :(scenario multiply) recipe main [ 1:number <- copy 4 2:number <- copy 6 3:number <- multiply 1:number, 2:number ] +mem: storing 24 in location 3 :(scenario multiply_multiple) recipe main [ 1:number <- multiply 2, 3, 4 ] +mem: storing 24 in location 1 :(before "End Primitive Recipe Declarations") DIVIDE, :(before "End Primitive Recipe Numbers") Recipe_ordinal["divide"] = DIVIDE; :(before "End Primitive Recipe Checks") case DIVIDE: { if (inst.ingredients.empty()) { raise << Recipe[r].name << ": 'divide' has no ingredients\n" << end(); break; } for (long long int i = 0; i < SIZE(inst.ingredients); ++i) { if (!is_mu_number(inst.ingredients.at(i))) { raise << Recipe[r].name << ": 'divide' requires number ingredients, but got " << inst.ingredients.at(i).original_string << '\n' << end(); goto finish_checking_instruction; } } if (SIZE(inst.products) > 1) { raise << Recipe[r].name << ": 'divide' yields exactly one product in '" << inst.to_string() << "'\n" << end(); break; } if (!inst.products.empty() && !is_dummy(inst.products.at(0)) && !is_mu_number(inst.products.at(0))) { raise << Recipe[r].name << ": 'divide' should yield a number, but got " << inst.products.at(0).original_string << '\n' << end(); break; } break; } :(before "End Primitive Recipe Implementations") case DIVIDE: { double result = ingredients.at(0).at(0); for (long long int i = 1; i < SIZE(ingredients); ++i) result /= ingredients.at(i).at(0); products.resize(1); products.at(0).push_back(result); break; } :(scenario divide_literal) recipe main [ 1:number <- divide 8, 2 ] +mem: storing 4 in location 1 :(scenario divide) recipe main [ 1:number <- copy 27 2:number <- copy 3 3:number <- divide 1:number, 2:number ] +mem: storing 9 in location 3 :(scenario divide_multiple) recipe main [ 1:number <- divide 12, 3, 2 ] +mem: storing 2 in location 1 //: Integer division :(before "End Primitive Recipe Declarations") DIVIDE_WITH_REMAINDER, :(before "End Primitive Recipe Numbers") Recipe_ordinal["divide-with-remainder"] = DIVIDE_WITH_REMAINDER; :(before "End Primitive Recipe Checks") case DIVIDE_WITH_REMAINDER: { if (SIZE(inst.ingredients) != 2) { raise << current_recipe_name() << ": 'divide-with-remainder' requires exactly two ingredients, but got '" << current_instruction().to_string() << "'\n" << end(); break; } if (!is_mu_number(inst.ingredients.at(0)) || !is_mu_number(inst.ingredients.at(1))) { raise << current_recipe_name() << ": 'divide-with-remainder' requires number ingredients, but got '" << current_instruction().to_string() << "'\n" << end(); break; } if (SIZE(inst.products) > 2) { raise << Recipe[r].name << ": 'divide-with-remainder' yields two products in '" << inst.to_string() << "'\n" << end(); break; } for (long long int i = 0; i < SIZE(inst.products); ++i) { if (!is_dummy(inst.products.at(i)) && !is_mu_number(inst.products.at(i))) { raise << Recipe[r].name << ": 'divide-with-remainder' should yield a number, but got " << inst.products.at(i).original_string << '\n' << end(); goto finish_checking_instruction; } } break; } :(before "End Primitive Recipe Implementations") case DIVIDE_WITH_REMAINDER: { products.resize(2); long long int a = static_cast(ingredients.at(0).at(0)); long long int b = static_cast(ingredients.at(1).at(0)); if (b == 0) { raise << current_recipe_name() << ": divide by zero in '" << current_instruction().to_string() << "'\n" << end(); break; } long long int quotient = a / b; long long int remainder = a % b; // very large integers will lose precision products.at(0).push_back(quotient); products.at(1).push_back(remainder); break; } :(scenario divide_with_remainder_literal) recipe main [ 1:number, 2:number <- divide-with-remainder 9, 2 ] +mem: storing 4 in location 1 +mem: storing 1 in location 2 :(scenario divide_with_remainder) recipe main [ 1:number <- copy 27 2:number <- copy 11 3:number, 4:number <- divide-with-remainder 1:number, 2:number ] +mem: storing 2 in location 3 +mem: storing 5 in location 4 :(scenario divide_with_decimal_point) recipe main [ 1:number <- divide 5, 2 ] +mem: storing 2.5 in location 1 :(scenario divide_by_zero) recipe main [ 1:number <- divide 4, 0 ] +mem: storing inf in location 1 :(scenario divide_by_zero_2) % Hide_warnings = true; recipe main [ 1:number <- divide-with-remainder 4, 0 ] # integer division can't return floating-point infinity +warn: main: divide by zero in '1:number <- divide-with-remainder 4, 0' :(code) inline bool scalar(const vector& x) { return SIZE(x) == 1; } inline bool scalar(const vector& x) { return SIZE(x) == 1; }