//: floating-point operations //:: convert to floating point :(before "End Initialize Op Names") put_new(Name_f3_0f, "2a", "convert integer to floating-point (cvtsi2ss)"); :(code) void test_cvtsi2ss() { Reg[EAX].i = 10; run( "== code 0x1\n" // op ModR/M SIB displacement immediate "f3 0f 2a c0 \n" // ModR/M in binary: 11 (direct mode) 000 (XMM0) 000 (EAX) ); CHECK_TRACE_CONTENTS( "run: convert r/m32 to XMM0\n" "run: r/m32 is EAX\n" "run: XMM0 is now 10\n" ); } :(before "End Three-Byte Opcodes Starting With f3 0f") case 0x2a: { // convert integer to float const uint8_t modrm = next(); const uint8_t dest = (modrm>>3)&0x7; trace(Callstack_depth+1, "run") << "convert r/m32 to " << Xname[dest] << end(); const int32_t* src = effective_address(modrm); Xmm[dest] = *src; trace(Callstack_depth+1, "run") << Xname[dest] << " is now " << Xmm[dest] << end(); break; } //:: convert floating point to int :(before "End Initialize Op Names") put_new(Name_f3_0f, "2d", "convert floating-point to int (cvtss2si)"); :(code) void test_cvtss2si() { Xmm[0] = 10.0; run( "== code 0x1\n" // op ModR/M SIB displacement immediate "f3 0f 2d c0 \n" // ModR/M in binary: 11 (direct mode) 000 (EAX) 000 (XMM0) ); CHECK_TRACE_CONTENTS( "run: convert x/m32 to EAX\n" "run: x/m32 is XMM0\n" "run: EAX is now 0x0000000a\n" ); } :(before "End Three-Byte Opcodes Starting With f3 0f") case 0x2d: { // convert float to integer const uint8_t modrm = next(); const uint8_t dest = (modrm>>3)&0x7; trace(Callstack_depth+1, "run") << "convert x/m32 to " << rname(dest) << end(); const float* src = effective_address_float(modrm); Reg[dest].i = *src; trace(Callstack_depth+1, "run") << rname(dest) << " is now 0x" << HEXWORD << Reg[dest].i << end(); break; } //:: add :(before "End Initialize Op Names") put_new(Name_f3_0f, "58", "add floats (addss)"); :(code) void test_addss() { Xmm[0] = 3.0; Xmm[1] = 2.0; run( "== code 0x1\n" // op ModR/M SIB displacement immediate "f3 0f 58 c1 \n" // ModR/M in binary: 11 (direct mode) 000 (XMM0) 001 (XMM1) ); CHECK_TRACE_CONTENTS( "run: add x/m32 to XMM0\n" "run: x/m32 is XMM1\n" "run: XMM0 is now 5\n" ); } :(before "End Three-Byte Opcodes Starting With f3 0f") case 0x58: { // add x/m32 to x32 const uint8_t modrm = next(); const uint8_t dest = (modrm>>3)&0x7; trace(Callstack_depth+1, "run") << "add x/m32 to " << Xname[dest] << end(); const float* src = effective_address_float(modrm); Xmm[dest] += *src; trace(Callstack_depth+1, "run") << Xname[dest] << " is now " << Xmm[dest] << end(); break; } //:: subtract :(before "End Initialize Op Names") put_new(Name_f3_0f, "5c", "subtract floats (subss)"); :(code) void test_subss() { Xmm[0] = 3.0; Xmm[1] = 2.0; run( "== code 0x1\n" // op ModR/M SIB displacement immediate "f3 0f 5c c1 \n" // ModR/M in binary: 11 (direct mode) 000 (XMM0) 001 (XMM1) ); CHECK_TRACE_CONTENTS( "run: subtract x/m32 from XMM0\n" "run: x/m32 is XMM1\n" "run: XMM0 is now 1\n" ); } :(before "End Three-Byte Opcodes Starting With f3 0f") case 0x5c: { // subtract x/m32 from x32 const uint8_t modrm = next(); const uint8_t dest = (modrm>>3)&0x7; trace(Callstack_depth+1, "run") << "subtract x/m32 from " << Xname[dest] << end(); const float* src = effective_address_float(modrm); Xmm[dest] -= *src; trace(Callstack_depth+1, "run") << Xname[dest] << " is now " << Xmm[dest] << end(); break; } //:: multiply :(before "End Initialize Op Names") put_new(Name_f3_0f, "59", "multiply floats (mulss)"); :(code) void test_mulss() { Xmm[0] = 3.0; Xmm[1] = 2.0; run( "== code 0x1\n" // op ModR/M SIB displacement immediate "f3 0f 59 c1 \n" // ModR/M in binary: 11 (direct mode) 000 (XMM0) 001 (XMM1) ); CHECK_TRACE_CONTENTS( "run: multiply XMM0 by x/m32\n" "run: x/m32 is XMM1\n" "run: XMM0 is now 6\n" ); } :(before "End Three-Byte Opcodes Starting With f3 0f") case 0x59: { // multiply x32 by x/m32 const uint8_t modrm = next(); const uint8_t dest = (modrm>>3)&0x7; trace(Callstack_depth+1, "run") << "multiply " << Xname[dest] << " by x/m32" << end(); const float* src = effective_address_float(modrm); Xmm[dest] *= *src; trace(Callstack_depth+1, "run") << Xname[dest] << " is now " << Xmm[dest] << end(); break; } //:: divide :(before "End Initialize Op Names") put_new(Name_f3_0f, "5e", "divide floats (divss)"); :(code) void test_divss() { Xmm[0] = 3.0; Xmm[1] = 2.0; run( "== code 0x1\n" // op ModR/M SIB displacement immediate "f3 0f 5e c1 \n" // ModR/M in binary: 11 (direct mode) 000 (XMM0) 001 (XMM1) ); CHECK_TRACE_CONTENTS( "run: divide XMM0 by x/m32\n" "run: x/m32 is XMM1\n" "run: XMM0 is now 1.5\n" ); } :(before "End Three-Byte Opcodes Starting With f3 0f") case 0x5e: { // divide x32 by x/m32 const uint8_t modrm = next(); const uint8_t dest = (modrm>>3)&0x7; trace(Callstack_depth+1, "run") << "divide " << Xname[dest] << " by x/m32" << end(); const float* src = effective_address_float(modrm); Xmm[dest] /= *src; trace(Callstack_depth+1, "run") << Xname[dest] << " is now " << Xmm[dest] << end(); break; } //:: min :(before "End Initialize Op Names") put_new(Name_f3_0f, "5d", "minimum of two floats (minss)"); :(code) void test_minss() { Xmm[0] = 3.0; Xmm[1] = 2.0; run( "== code 0x1\n" // op ModR/M SIB displacement immediate "f3 0f 5d c1 \n" // ModR/M in binary: 11 (direct mode) 000 (XMM0) 001 (XMM1) ); CHECK_TRACE_CONTENTS( "run: minimum of XMM0 and x/m32\n" "run: x/m32 is XMM1\n" "run: XMM0 is now 2\n" ); } :(before "End Three-Byte Opcodes Starting With f3 0f") case 0x5d: { // minimum of x32, x/m32 const uint8_t modrm = next(); const uint8_t dest = (modrm>>3)&0x7; trace(Callstack_depth+1, "run") << "minimum of " << Xname[dest] << " and x/m32" << end(); const float* src = effective_address_float(modrm); Xmm[dest] = min(Xmm[dest], *src); trace(Callstack_depth+1, "run") << Xname[dest] << " is now " << Xmm[dest] << end(); break; } //:: max :(before "End Initialize Op Names") put_new(Name_f3_0f, "5f", "maximum of two floats (maxss)"); :(code) void test_maxss() { Xmm[0] = 3.0; Xmm[1] = 2.0; run( "== code 0x1\n" // op ModR/M SIB displacement immediate "f3 0f 5f c1 \n" // ModR/M in binary: 11 (direct mode) 000 (XMM0) 001 (XMM1) ); CHECK_TRACE_CONTENTS( "run: maximum of XMM0 and x/m32\n" "run: x/m32 is XMM1\n" "run: XMM0 is now 3\n" ); } :(before "End Three-Byte Opcodes Starting With f3 0f") case 0x5f: { // maximum of x32, x/m32 const uint8_t modrm = next(); const uint8_t dest = (modrm>>3)&0x7; trace(Callstack_depth+1, "run") << "maximum of " << Xname[dest] << " and x/m32" << end(); const float* src = effective_address_float(modrm); Xmm[dest] = max(Xmm[dest], *src); trace(Callstack_depth+1, "run") << Xname[dest] << " is now " << Xmm[dest] << end(); break; } //:: reciprocal :(before "End Initialize Op Names") put_new(Name_f3_0f, "53", "reciprocal of float (rcpss)"); :(code) void test_rcpss() { Xmm[1] = 2.0; run( "== code 0x1\n" // op ModR/M SIB displacement immediate "f3 0f 53 c1 \n" // ModR/M in binary: 11 (direct mode) 000 (XMM0) 001 (XMM1) ); CHECK_TRACE_CONTENTS( "run: reciprocal of x/m32 into XMM0\n" "run: x/m32 is XMM1\n" "run: XMM0 is now 0.5\n" ); } :(before "End Three-Byte Opcodes Starting With f3 0f") case 0x53: { // reciprocal of x/m32 into x32 const uint8_t modrm = next(); const uint8_t dest = (modrm>>3)&0x7; trace(Callstack_depth+1, "run") << "reciprocal of x/m32 into " << Xname[dest] << end(); const float* src = effective_address_float(modrm); Xmm[dest] = 1.0 / *src; trace(Callstack_depth+1, "run") << Xname[dest] << " is now " << Xmm[dest] << end(); break; } //:: square root :(before "End Initialize Op Names") put_new(Name_f3_0f, "51", "square root of float (sqrtss)"); :(code) void test_sqrtss() { Xmm[1] = 2.0; run( "== code 0x1\n" // op ModR/M SIB displacement immediate "f3 0f 51 c1 \n" // ModR/M in binary: 11 (direct mode) 000 (XMM0) 001 (XMM1) ); CHECK_TRACE_CONTENTS( "run: square root of x/m32 into XMM0\n" "run: x/m32 is XMM1\n" "run: XMM0 is now 1.41421\n" ); } :(before "End Three-Byte Opcodes Starting With f3 0f") case 0x51: { // square root of x/m32 into x32 const uint8_t modrm = next(); const uint8_t dest = (modrm>>3)&0x7; trace(Callstack_depth+1, "run") << "square root of x/m32 into " << Xname[dest] << end(); const float* src = effective_address_float(modrm); Xmm[dest] = sqrt(*src); trace(Callstack_depth+1, "run") << Xname[dest] << " is now " << Xmm[dest] << end(); break; } :(before "End Includes") #include //:: inverse square root :(before "End Initialize Op Names") put_new(Name_f3_0f, "52", "inverse square root of float (rsqrtss)"); :(code) void test_rsqrtss() { Xmm[1] = 0.01; run( "== code 0x1\n" // op ModR/M SIB displacement immediate "f3 0f 52 c1 \n" // ModR/M in binary: 11 (direct mode) 000 (XMM0) 001 (XMM1) ); CHECK_TRACE_CONTENTS( "run: inverse square root of x/m32 into XMM0\n" "run: x/m32 is XMM1\n" "run: XMM0 is now 10\n" ); } :(before "End Three-Byte Opcodes Starting With f3 0f") case 0x52: { // inverse square root of x/m32 into x32 const uint8_t modrm = next(); const uint8_t dest = (modrm>>3)&0x7; trace(Callstack_depth+1, "run") << "inverse square root of x/m32 into " << Xname[dest] << end(); const float* src = effective_address_float(modrm); Xmm[dest] = 1.0 / sqrt(*src); trace(Callstack_depth+1, "run") << Xname[dest] << " is now " << Xmm[dest] << end(); break; } :(code) float* effective_address_float(uint8_t modrm) { const uint8_t mod = (modrm>>6); // ignore middle 3 'reg opcode' bits const uint8_t rm = modrm & 0x7; if (mod == 3) { // mod 3 is just register direct addressing trace(Callstack_depth+1, "run") << "x/m32 is " << Xname[rm] << end(); return &Xmm[rm]; } uint32_t addr = effective_address_number(modrm); trace(Callstack_depth+1, "run") << "effective address contains " << read_mem_f32(addr) << end(); return mem_addr_f32(addr); } //: compare :(before "End Initialize Op Names") put_new(Name_0f, "2f", "compare: set SF if x32 < xm32 (comiss)"); :(code) void test_compare_x32_with_mem_at_rm32() { Reg[EAX].i = 0x2000; Xmm[3] = 0.5; run( "== code 0x1\n" // op ModR/M SIB displacement immediate " 0f 2f 18 \n" // compare XMM3 with *EAX // ModR/M in binary: 00 (indirect mode) 011 (lhs XMM3) 000 (rhs EAX) "== data 0x2000\n" "00 00 00 00\n" // 0x00000000 = 0.0 ); CHECK_TRACE_CONTENTS( "run: compare XMM3 with x/m32\n" "run: effective address is 0x00002000 (EAX)\n" "run: SF=0; ZF=0; CF=0; OF=0\n" ); } :(before "End Two-Byte Opcodes Starting With 0f") case 0x2f: { // set SF if x32 < x/m32 const uint8_t modrm = next(); const uint8_t reg1 = (modrm>>3)&0x7; trace(Callstack_depth+1, "run") << "compare " << Xname[reg1] << " with x/m32" << end(); const float* arg2 = effective_address_float(modrm); // Flag settings carefully copied from the Intel manual. // See also https://stackoverflow.com/questions/7057501/x86-assembler-floating-point-compare/7057771#7057771 SF = ZF = CF = OF = false; if (Xmm[reg1] == *arg2) ZF = true; if (Xmm[reg1] < *arg2) CF = true; trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); break; }