//: Calls can also generate products, using 'reply' or 'return'. :(scenario return) def main [ 1:num, 2:num <- f 34 ] def f [ 12:num <- next-ingredient 13:num <- add 1, 12:num return 12:num, 13:num ] +mem: storing 34 in location 1 +mem: storing 35 in location 2 :(scenario reply) def main [ 1:num, 2:num <- f 34 ] def f [ 12:num <- next-ingredient 13:num <- add 1, 12:num reply 12:num, 13:num ] +mem: storing 34 in location 1 +mem: storing 35 in location 2 :(before "End Primitive Recipe Declarations") RETURN, :(before "End Primitive Recipe Numbers") put(Recipe_ordinal, "return", RETURN); put(Recipe_ordinal, "reply", RETURN); // synonym while teaching :(before "End Primitive Recipe Checks") case RETURN: { break; // checks will be performed by a transform below } :(before "End Primitive Recipe Implementations") case RETURN: { // Starting Reply if (Trace_stream) { trace(9999, "trace") << current_instruction().name << ": decrementing callstack depth from " << Trace_stream->callstack_depth << end(); --Trace_stream->callstack_depth; if (Trace_stream->callstack_depth < 0) { Current_routine->calls.clear(); goto stop_running_current_routine; } } Current_routine->calls.pop_front(); // just in case 'main' returns a value, drop it for now if (Current_routine->calls.empty()) goto stop_running_current_routine; for (int i = 0; i < SIZE(ingredients); ++i) trace(9998, "run") << "result " << i << " is " << to_string(ingredients.at(i)) << end(); // make return products available to caller copy(ingredients.begin(), ingredients.end(), inserter(products, products.begin())); // End Reply break; // continue to process rest of *caller* instruction } //: Types in return instructions are checked ahead of time. :(before "End Checks") Transform.push_back(check_types_of_return_instructions); // idempotent :(code) void check_types_of_return_instructions(const recipe_ordinal r) { const recipe& caller = get(Recipe, r); trace(9991, "transform") << "--- check types of return instructions in recipe " << caller.name << end(); for (int i = 0; i < SIZE(caller.steps); ++i) { const instruction& caller_instruction = caller.steps.at(i); if (caller_instruction.is_label) continue; if (caller_instruction.products.empty()) continue; if (is_primitive(caller_instruction.operation)) continue; const recipe& callee = get(Recipe, caller_instruction.operation); for (int i = 0; i < SIZE(callee.steps); ++i) { const instruction& return_inst = callee.steps.at(i); if (return_inst.operation != RETURN) continue; // check types with the caller if (SIZE(caller_instruction.products) > SIZE(return_inst.ingredients)) { raise << maybe(caller.name) << "too few values returned from " << callee.name << '\n' << end(); break; } for (int i = 0; i < SIZE(caller_instruction.products); ++i) { reagent/*copy*/ lhs = return_inst.ingredients.at(i); reagent/*copy*/ rhs = caller_instruction.products.at(i); // End Check RETURN Copy(lhs, rhs) if (!types_coercible(rhs, lhs)) { raise << maybe(callee.name) << return_inst.name << " ingredient '" << lhs.original_string << "' can't be saved in '" << rhs.original_string << "'\n" << end(); raise << " ['" << to_string(lhs.type) << "' vs '" << to_string(rhs.type) << "']\n" << end(); goto finish_return_check; } } // check that any return ingredients with /same-as-ingredient connect up // the corresponding ingredient and product in the caller. for (int i = 0; i < SIZE(caller_instruction.products); ++i) { if (has_property(return_inst.ingredients.at(i), "same-as-ingredient")) { string_tree* tmp = property(return_inst.ingredients.at(i), "same-as-ingredient"); if (!tmp || !tmp->atom) { raise << maybe(caller.name) << "'same-as-ingredient' metadata should take exactly one value in '" << to_original_string(return_inst) << "'\n" << end(); goto finish_return_check; } int ingredient_index = to_integer(tmp->value); if (ingredient_index >= SIZE(caller_instruction.ingredients)) { raise << maybe(caller.name) << "too few ingredients in '" << to_original_string(caller_instruction) << "'\n" << end(); goto finish_return_check; } if (!is_dummy(caller_instruction.products.at(i)) && !is_literal(caller_instruction.ingredients.at(ingredient_index)) && caller_instruction.products.at(i).name != caller_instruction.ingredients.at(ingredient_index).name) { raise << maybe(caller.name) << "'" << to_original_string(caller_instruction) << "' should write to '" << caller_instruction.ingredients.at(ingredient_index).original_string << "' rather than '" << caller_instruction.products.at(i).original_string << "'\n" << end(); } } } finish_return_check:; } } } bool is_primitive(recipe_ordinal r) { return r < MAX_PRIMITIVE_RECIPES; } :(scenario return_type_mismatch) % Hide_errors = true; def main [ 3:num <- f 2 ] def f [ 12:num <- next-ingredient 13:num <- copy 35 14:point <- copy 12:point/raw return 14:point ] +error: f: return ingredient '14:point' can't be saved in '3:num' //: In Mu we'd like to assume that any instruction doesn't modify its //: ingredients unless they're also products. The /same-as-ingredient inside //: the recipe's 'return' indicates that an ingredient is intended to be //: modified in place, and will help catch accidental misuse of such //: 'ingredient-products' (sometimes called in-out parameters in other //: languages). :(scenario return_same_as_ingredient) % Hide_errors = true; def main [ 1:num <- copy 0 2:num <- test1 1:num # call with different ingredient and product ] def test1 [ 10:num <- next-ingredient return 10:num/same-as-ingredient:0 ] +error: main: '2:num <- test1 1:num' should write to '1:num' rather than '2:num' :(scenario return_same_as_ingredient_dummy) def main [ 1:num <- copy 0 _ <- test1 1:num # call with different ingredient and product ] def test1 [ 10:num <- next-ingredient return 10:num/same-as-ingredient:0 ] $error: 0 :(code) string to_string(const vector& in) { if (in.empty()) return "[]"; ostringstream out; if (SIZE(in) == 1) { out << no_scientific(in.at(0)); return out.str(); } out << "["; for (int i = 0; i < SIZE(in); ++i) { if (i > 0) out << ", "; out << no_scientific(in.at(i)); } out << "]"; return out.str(); }