//: Containers contain a fixed number of elements of different types. :(before "End Mu Types Initialization") //: We'll use this container as a running example, with two integer elements. type_number point = Type_number["point"] = Next_type_number++; Type[point].size = 2; Type[point].kind = container; Type[point].name = "point"; vector i; i.push_back(integer); Type[point].elements.push_back(i); Type[point].elements.push_back(i); //: Containers can be copied around with a single instruction just like //: integers, no matter how large they are. :(scenario copy_multiple_locations) recipe main [ 1:integer <- copy 34:literal 2:integer <- copy 35:literal 3:point <- copy 1:point ] +run: ingredient 0 is 1 +mem: location 1 is 34 +mem: location 2 is 35 +mem: storing 34 in location 3 +mem: storing 35 in location 4 :(before "End Mu Types Initialization") // A more complex container, containing another container as one of its // elements. type_number point_integer = Type_number["point-integer"] = Next_type_number++; Type[point_integer].size = 2; Type[point_integer].kind = container; Type[point_integer].name = "point-integer"; vector p2; p2.push_back(point); Type[point_integer].elements.push_back(p2); vector i2; i2.push_back(integer); Type[point_integer].elements.push_back(i2); :(scenario copy_handles_nested_container_elements) recipe main [ 12:integer <- copy 34:literal 13:integer <- copy 35:literal 14:integer <- copy 36:literal 15:point-integer <- copy 12:point-integer ] +mem: storing 36 in location 17 //: Containers can be checked for equality with a single instruction just like //: integers, no matter how large they are. :(scenario compare_multiple_locations) recipe main [ 1:integer <- copy 34:literal # first 2:integer <- copy 35:literal 3:integer <- copy 36:literal 4:integer <- copy 34:literal # second 5:integer <- copy 35:literal 6:integer <- copy 36:literal 7:boolean <- equal 1:point-integer, 4:point-integer ] +mem: storing 1 in location 7 :(scenario compare_multiple_locations2) recipe main [ 1:integer <- copy 34:literal # first 2:integer <- copy 35:literal 3:integer <- copy 36:literal 4:integer <- copy 34:literal # second 5:integer <- copy 35:literal 6:integer <- copy 37:literal # different 7:boolean <- equal 1:point-integer, 4:point-integer ] +mem: storing 0 in location 7 :(before "End size_of(types) Cases") type_info t = Type[types.at(0)]; if (t.kind == container) { // size of a container is the sum of the sizes of its elements size_t result = 0; for (index_t i = 0; i < t.elements.size(); ++i) { result += size_of(t.elements.at(i)); } return result; } //:: To access elements of a container, use 'get' :(scenario get) recipe main [ 12:integer <- copy 34:literal 13:integer <- copy 35:literal 15:integer <- get 12:point, 1:offset ] +run: instruction main/2 +run: ingredient 0 is 12 +run: ingredient 1 is 1 +run: address to copy is 13 +run: its type is 1 +mem: location 13 is 35 +run: product 0 is 15 +mem: storing 35 in location 15 :(before "End Primitive Recipe Declarations") GET, :(before "End Primitive Recipe Numbers") Recipe_number["get"] = GET; :(before "End Primitive Recipe Implementations") case GET: { reagent base = current_instruction().ingredients.at(0); index_t base_address = base.value; type_number base_type = base.types.at(0); assert(Type[base_type].kind == container); assert(isa_literal(current_instruction().ingredients.at(1))); assert(ingredients.at(1).size() == 1); // scalar index_t offset = ingredients.at(1).at(0); index_t src = base_address; for (index_t i = 0; i < offset; ++i) { src += size_of(Type[base_type].elements.at(i)); } trace("run") << "address to copy is " << src; assert(Type[base_type].kind == container); assert(Type[base_type].elements.size() > offset); type_number src_type = Type[base_type].elements[offset].at(0); trace("run") << "its type is " << src_type; reagent tmp; tmp.set_value(src); tmp.types.push_back(src_type); products.push_back(read_memory(tmp)); break; } //: 'get' requires a literal in ingredient 1. We'll use a synonym called //: 'offset'. :(before "End Mu Types Initialization") Type_number["offset"] = 0; :(scenario get_handles_nested_container_elements) recipe main [ 12:integer <- copy 34:literal 13:integer <- copy 35:literal 14:integer <- copy 36:literal 15:integer <- get 12:point-integer, 1:offset ] +run: instruction main/2 +run: ingredient 0 is 12 +run: ingredient 1 is 1 +run: address to copy is 14 +run: its type is 1 +mem: location 14 is 36 +run: product 0 is 15 +mem: storing 36 in location 15 //:: To write to elements of containers, you need their address. :(scenario get_address) recipe main [ 12:integer <- copy 34:literal 13:integer <- copy 35:literal 15:address:integer <- get-address 12:point, 1:offset ] +run: instruction main/2 +run: ingredient 0 is 12 +run: ingredient 1 is 1 +run: address to copy is 13 +mem: storing 13 in location 15 :(before "End Primitive Recipe Declarations") GET_ADDRESS, :(before "End Primitive Recipe Numbers") Recipe_number["get-address"] = GET_ADDRESS; :(before "End Primitive Recipe Implementations") case GET_ADDRESS: { reagent base = current_instruction().ingredients.at(0); index_t base_address = base.value; type_number base_type = base.types.at(0); assert(Type[base_type].kind == container); assert(isa_literal(current_instruction().ingredients.at(1))); assert(ingredients.at(1).size() == 1); // scalar index_t offset = ingredients.at(1).at(0); index_t result = base_address; for (index_t i = 0; i < offset; ++i) { result += size_of(Type[base_type].elements.at(i)); } trace("run") << "address to copy is " << result; products.resize(1); products.at(0).push_back(result); break; }