//: Containers contain a fixed number of elements of different types. :(before "End Mu Types Initialization") //: We'll use this container as a running example, with two number elements. type_ordinal point = Type_ordinal["point"] = Next_type_ordinal++; Type[point].size = 2; Type[point].kind = container; Type[point].name = "point"; vector i; i.push_back(number); Type[point].elements.push_back(i); Type[point].elements.push_back(i); //: Containers can be copied around with a single instruction just like //: numbers, no matter how large they are. //: Tests in this layer often explicitly setup memory before reading it as a //: container. Don't do this in general. I'm tagging exceptions with /raw to //: avoid warnings. :(scenario copy_multiple_locations) recipe main [ 1:number <- copy 34:literal 2:number <- copy 35:literal 3:point <- copy 1:point/raw # unsafe ] +mem: storing 34 in location 3 +mem: storing 35 in location 4 :(before "End Mu Types Initialization") // A more complex container, containing another container as one of its // elements. type_ordinal point_number = Type_ordinal["point-number"] = Next_type_ordinal++; Type[point_number].size = 2; Type[point_number].kind = container; Type[point_number].name = "point-number"; vector p2; p2.push_back(point); Type[point_number].elements.push_back(p2); vector i2; i2.push_back(number); Type[point_number].elements.push_back(i2); :(scenario copy_handles_nested_container_elements) recipe main [ 12:number <- copy 34:literal 13:number <- copy 35:literal 14:number <- copy 36:literal 15:point-number <- copy 12:point-number/raw # unsafe ] +mem: storing 36 in location 17 //: Containers can be checked for equality with a single instruction just like //: numbers, no matter how large they are. :(scenario compare_multiple_locations) recipe main [ 1:number <- copy 34:literal # first 2:number <- copy 35:literal 3:number <- copy 36:literal 4:number <- copy 34:literal # second 5:number <- copy 35:literal 6:number <- copy 36:literal 7:boolean <- equal 1:point-number/raw, 4:point-number/raw # unsafe ] +mem: storing 1 in location 7 :(scenario compare_multiple_locations2) recipe main [ 1:number <- copy 34:literal # first 2:number <- copy 35:literal 3:number <- copy 36:literal 4:number <- copy 34:literal # second 5:number <- copy 35:literal 6:number <- copy 37:literal # different 7:boolean <- equal 1:point-number/raw, 4:point-number/raw # unsafe ] +mem: storing 0 in location 7 :(before "End size_of(types) Cases") type_info t = Type[types.at(0)]; if (t.kind == container) { // size of a container is the sum of the sizes of its elements long long int result = 0; for (long long int i = 0; i < SIZE(t.elements); ++i) { // todo: strengthen assertion to disallow mutual type recursion if (types.at(0) == t.elements.at(i).at(0)) { raise << "container " << t.name << " can't include itself as a member\n" << end(); return 0; } result += size_of(t.elements.at(i)); } return result; } //:: To access elements of a container, use 'get' :(scenario get) recipe main [ 12:number <- copy 34:literal 13:number <- copy 35:literal 15:number <- get 12:point/raw, 1:offset # unsafe ] +mem: storing 35 in location 15 :(before "End Primitive Recipe Declarations") GET, :(before "End Primitive Recipe Numbers") Recipe_ordinal["get"] = GET; :(before "End Primitive Recipe Implementations") case GET: { if (ingredients.size() != 2) { raise << current_recipe_name() << ": 'get' expects exactly 2 ingredients in '" << current_instruction().to_string() << "'\n" << end(); break; } reagent base = current_instruction().ingredients.at(0); long long int base_address = base.value; type_ordinal base_type = base.types.at(0); if (Type[base_type].kind != container) { raise << current_recipe_name () << ": 'get' on a non-container " << base.original_string << '\n' << end(); break; } if (!is_literal(current_instruction().ingredients.at(1))) { raise << current_recipe_name() << ": expected ingredient 1 of 'get' to have type 'offset', got '" << current_instruction().ingredients.at(1).original_string << "'\n" << end(); break; } assert(scalar(ingredients.at(1))); long long int offset = ingredients.at(1).at(0); long long int src = base_address; for (long long int i = 0; i < offset; ++i) { src += size_of(Type[base_type].elements.at(i)); } trace(Primitive_recipe_depth, "run") << "address to copy is " << src << end(); if (offset < 0 || offset >= SIZE(Type[base_type].elements)) { raise << current_recipe_name() << ": invalid offset " << offset << " for " << Type[base_type].name << '\n' << end(); products.resize(1); break; } type_ordinal src_type = Type[base_type].elements.at(offset).at(0); trace(Primitive_recipe_depth, "run") << "its type is " << Type[src_type].name << end(); reagent tmp; tmp.set_value(src); tmp.types.push_back(src_type); products.push_back(read_memory(tmp)); break; } :(scenario get_handles_nested_container_elements) recipe main [ 12:number <- copy 34:literal 13:number <- copy 35:literal 14:number <- copy 36:literal 15:number <- get 12:point-number/raw, 1:offset # unsafe ] +mem: storing 36 in location 15 //:: To write to elements of containers, you need their address. :(scenario get_address) recipe main [ 12:number <- copy 34:literal 13:number <- copy 35:literal 15:address:number <- get-address 12:point/raw, 1:offset # unsafe ] +mem: storing 13 in location 15 :(scenario get_out_of_bounds) % Hide_warnings = true; recipe main [ 12:number <- copy 34:literal 13:number <- copy 35:literal 14:number <- copy 36:literal get 12:point-number/raw, 2:offset # point-number occupies 3 locations but has only 2 fields; out of bounds ] +warn: main: invalid offset 2 for point-number :(scenario get_out_of_bounds2) % Hide_warnings = true; recipe main [ 12:number <- copy 34:literal 13:number <- copy 35:literal 14:number <- copy 36:literal get 12:point-number/raw, -1:offset ] +warn: main: invalid offset -1 for point-number :(before "End Primitive Recipe Declarations") GET_ADDRESS, :(before "End Primitive Recipe Numbers") Recipe_ordinal["get-address"] = GET_ADDRESS; :(before "End Primitive Recipe Implementations") case GET_ADDRESS: { reagent base = current_instruction().ingredients.at(0); long long int base_address = base.value; type_ordinal base_type = base.types.at(0); if (Type[base_type].kind != container) { raise << current_recipe_name () << ": 'get-address' on a non-container " << base.original_string << '\n' << end(); break; } if (!is_literal(current_instruction().ingredients.at(1))) { raise << current_recipe_name() << ": expected ingredient 1 of 'get-address' to have type 'offset', got '" << current_instruction().ingredients.at(1).original_string << "'\n" << end(); break; } assert(scalar(ingredients.at(1))); long long int offset = ingredients.at(1).at(0); if (offset < 0 || offset >= SIZE(Type[base_type].elements)) { raise << "invalid offset " << offset << " for " << Type[base_type].name << '\n' << end(); products.resize(1); break; } long long int result = base_address; for (long long int i = 0; i < offset; ++i) { result += size_of(Type[base_type].elements.at(i)); } trace(Primitive_recipe_depth, "run") << "address to copy is " << result << end(); products.resize(1); products.at(0).push_back(result); break; } :(scenario get_address_out_of_bounds) % Hide_warnings = true; recipe main [ 12:number <- copy 34:literal 13:number <- copy 35:literal 14:number <- copy 36:literal get-address 12:point-number/raw, 2:offset # point-number occupies 3 locations but has only 2 fields; out of bounds ] +warn: invalid offset 2 for point-number :(scenario get_address_out_of_bounds2) % Hide_warnings = true; recipe main [ 12:number <- copy 34:literal 13:number <- copy 35:literal 14:number <- copy 36:literal get-address 12:point-number/raw, -1:offset ] +warn: invalid offset -1 for point-number //:: Allow containers to be defined in mu code. :(scenarios load) :(scenario container) container foo [ x:number y:number ] +parse: reading container foo +parse: element name: x +parse: type: 1 +parse: element name: y +parse: type: 1 :(scenario container_use_before_definition) container foo [ x:number y:bar ] container bar [ x:number y:number ] +parse: reading container foo +parse: type number: 1000 +parse: element name: x +parse: type: 1 +parse: element name: y +parse: type: 1001 +parse: reading container bar +parse: type number: 1001 :(before "End Command Handlers") else if (command == "container") { insert_container(command, container, in); } :(code) void insert_container(const string& command, kind_of_type kind, istream& in) { skip_whitespace(in); string name = next_word(in); trace("parse") << "reading " << command << ' ' << name << end(); //? cout << name << '\n'; //? 2 //? if (Type_ordinal.find(name) != Type_ordinal.end()) //? 1 //? cerr << Type_ordinal[name] << '\n'; //? 1 if (Type_ordinal.find(name) == Type_ordinal.end() || Type_ordinal[name] == 0) { Type_ordinal[name] = Next_type_ordinal++; } trace("parse") << "type number: " << Type_ordinal[name] << end(); skip_bracket(in, "'container' must begin with '['"); type_info& t = Type[Type_ordinal[name]]; recently_added_types.push_back(Type_ordinal[name]); t.name = name; t.kind = kind; while (!in.eof()) { skip_whitespace_and_comments(in); string element = next_word(in); if (element == "]") break; istringstream inner(element); t.element_names.push_back(slurp_until(inner, ':')); trace("parse") << " element name: " << t.element_names.back() << end(); vector types; while (!inner.eof()) { string type_name = slurp_until(inner, ':'); if (Type_ordinal.find(type_name) == Type_ordinal.end()) { //? cerr << type_name << " is " << Next_type_ordinal << '\n'; //? 1 Type_ordinal[type_name] = Next_type_ordinal++; } types.push_back(Type_ordinal[type_name]); trace("parse") << " type: " << types.back() << end(); } t.elements.push_back(types); } assert(SIZE(t.elements) == SIZE(t.element_names)); t.size = SIZE(t.elements); } //: ensure types created in one scenario don't leak outside it. :(before "End Globals") vector recently_added_types; :(before "End load_permanently") //: for non-tests recently_added_types.clear(); :(before "End Setup") //: for tests for (long long int i = 0; i < SIZE(recently_added_types); ++i) { //? cout << "erasing " << Type[recently_added_types.at(i)].name << '\n'; //? 1 Type_ordinal.erase(Type[recently_added_types.at(i)].name); Type.erase(recently_added_types.at(i)); } recently_added_types.clear(); // delete recent type references // can't rely on recently_added_types to cleanup Type_ordinal, because of deliberately misbehaving tests with references to undefined types map::iterator p = Type_ordinal.begin(); while(p != Type_ordinal.end()) { // save current item string name = p->first; type_ordinal t = p->second; // increment iterator ++p; // now delete current item if necessary if (t >= 1000) { //? cerr << "AAA " << name << " " << t << '\n'; //? 1 Type_ordinal.erase(name); } } //: lastly, ensure scenarios are consistent by always starting them at the //: same type number. Next_type_ordinal = 1000; :(before "End Test Run Initialization") assert(Next_type_ordinal < 1000); :(before "End Setup") Next_type_ordinal = 1000; //:: Allow container definitions anywhere in the codebase, but warn if you //:: can't find a definition. :(scenarios run) :(scenario run_warns_on_unknown_types) % Hide_warnings = true; #? % Trace_stream->dump_layer = "run"; recipe main [ # integer is not a type 1:integer <- copy 0:literal ] +warn: unknown type: integer :(scenario run_allows_type_definition_after_use) % Hide_warnings = true; recipe main [ 1:bar <- copy 0:literal ] container bar [ x:number ] -warn: unknown type: bar $warn: 0 :(after "int main") Transform.push_back(check_invalid_types); :(code) void check_invalid_types(const recipe_ordinal r) { for (long long int index = 0; index < SIZE(Recipe[r].steps); ++index) { const instruction& inst = Recipe[r].steps.at(index); for (long long int i = 0; i < SIZE(inst.ingredients); ++i) { check_invalid_types(inst.ingredients.at(i)); } for (long long int i = 0; i < SIZE(inst.products); ++i) { check_invalid_types(inst.products.at(i)); } } } void check_invalid_types(const reagent& r) { for (long long int i = 0; i < SIZE(r.types); ++i) { if (r.types.at(i) == 0) continue; if (Type.find(r.types.at(i)) == Type.end()) raise << "unknown type: " << r.properties.at(0).second.at(i) << '\n' << end(); } } :(scenario container_unknown_field) % Hide_warnings = true; container foo [ x:number y:bar ] +warn: unknown type for field y in foo :(scenario read_container_with_bracket_in_comment) container foo [ x:number # ']' in comment y:number ] +parse: reading container foo +parse: element name: x +parse: type: 1 +parse: element name: y +parse: type: 1 :(before "End Load Sanity Checks") check_container_field_types(); :(code) void check_container_field_types() { for (map::iterator p = Type.begin(); p != Type.end(); ++p) { const type_info& info = p->second; //? cerr << "checking " << p->first << '\n'; //? 1 for (long long int i = 0; i < SIZE(info.elements); ++i) { for (long long int j = 0; j < SIZE(info.elements.at(i)); ++j) { if (info.elements.at(i).at(j) == 0) continue; if (Type.find(info.elements.at(i).at(j)) == Type.end()) raise << "unknown type for field " << info.element_names.at(i) << " in " << info.name << '\n' << end(); } } } } //:: Construct types out of their constituent fields. Doesn't currently do //:: type-checking but *does* match sizes. :(before "End Primitive Recipe Declarations") MERGE, :(before "End Primitive Recipe Numbers") Recipe_ordinal["merge"] = MERGE; :(before "End Primitive Recipe Implementations") case MERGE: { products.resize(1); for (long long int i = 0; i < SIZE(ingredients); ++i) for (long long int j = 0; j < SIZE(ingredients.at(i)); ++j) products.at(0).push_back(ingredients.at(i).at(j)); break; } :(scenario merge) container foo [ x:number y:number ] recipe main [ 1:foo <- merge 3:literal, 4:literal ] +mem: storing 3 in location 1 +mem: storing 4 in location 2 //:: helpers :(code) void skip_bracket(istream& in, string message) { skip_whitespace_and_comments(in); if (in.get() != '[') raise << message << '\n' << end(); }