//: Containers contain a fixed number of elements of different types. :(before "End Mu Types Initialization") //: We'll use this container as a running example in scenarios below. type_ordinal point = put(Type_ordinal, "point", Next_type_ordinal++); get_or_insert(Type, point); // initialize get(Type, point).kind = CONTAINER; get(Type, point).name = "point"; get(Type, point).elements.push_back(reagent("x:number")); get(Type, point).elements.push_back(reagent("y:number")); //: Containers can be copied around with a single instruction just like //: numbers, no matter how large they are. //: Tests in this layer often explicitly set up memory before reading it as a //: container. Don't do this in general. I'm tagging exceptions with /unsafe to //: skip later checks. :(scenario copy_multiple_locations) def main [ 1:num <- copy 34 2:num <- copy 35 3:point <- copy 1:point/unsafe ] +mem: storing 34 in location 3 +mem: storing 35 in location 4 //: trying to copy to a differently-typed destination will fail :(scenario copy_checks_size) % Hide_errors = true; def main [ 2:point <- copy 1:num ] +error: main: can't copy '1:num' to '2:point'; types don't match :(before "End Mu Types Initialization") // A more complex example container, containing another container as one of // its elements. type_ordinal point_number = put(Type_ordinal, "point-number", Next_type_ordinal++); get_or_insert(Type, point_number); // initialize get(Type, point_number).kind = CONTAINER; get(Type, point_number).name = "point-number"; get(Type, point_number).elements.push_back(reagent("xy:point")); get(Type, point_number).elements.push_back(reagent("z:number")); :(scenario copy_handles_nested_container_elements) def main [ 12:num <- copy 34 13:num <- copy 35 14:num <- copy 36 15:point-number <- copy 12:point-number/unsafe ] +mem: storing 36 in location 17 //: products of recipes can include containers :(scenario return_container) def main [ 3:point <- f 2 ] def f [ 12:num <- next-ingredient 13:num <- copy 35 return 12:point/raw ] +run: result 0 is [2, 35] +mem: storing 2 in location 3 +mem: storing 35 in location 4 //: Containers can be checked for equality with a single instruction just like //: numbers, no matter how large they are. :(scenario compare_multiple_locations) def main [ 1:num <- copy 34 # first 2:num <- copy 35 3:num <- copy 36 4:num <- copy 34 # second 5:num <- copy 35 6:num <- copy 36 7:bool <- equal 1:point-number/raw, 4:point-number/unsafe ] +mem: storing 1 in location 7 :(scenario compare_multiple_locations_2) def main [ 1:num <- copy 34 # first 2:num <- copy 35 3:num <- copy 36 4:num <- copy 34 # second 5:num <- copy 35 6:num <- copy 37 # different 7:bool <- equal 1:point-number/raw, 4:point-number/unsafe ] +mem: storing 0 in location 7 //: Can't put this in type_info because later layers will add support for more //: complex type trees where metadata depends on *combinations* of types. :(before "struct reagent") struct container_metadata { int size; vector offset; // not used by exclusive containers // End container_metadata Fields container_metadata() :size(0) { // End container_metadata Constructor } }; :(before "End reagent Fields") container_metadata metadata; // can't be a pointer into Container_metadata because we keep changing the base storage when we save/restore snapshots :(before "End reagent Copy Operator") metadata = other.metadata; :(before "End reagent Copy Constructor") metadata = other.metadata; :(before "End Globals") // todo: switch to map after figuring out how to consistently compare type trees vector > Container_metadata, Container_metadata_snapshot; :(before "End save_snapshots") Container_metadata_snapshot = Container_metadata; :(before "End restore_snapshots") restore_container_metadata(); :(before "End One-time Setup") atexit(clear_container_metadata); :(code) // invariant: Container_metadata always contains a superset of Container_metadata_snapshot void restore_container_metadata() { for (int i = 0; i < SIZE(Container_metadata); ++i) { assert(Container_metadata.at(i).first); if (i < SIZE(Container_metadata_snapshot)) { assert(Container_metadata.at(i).first == Container_metadata_snapshot.at(i).first); continue; } delete Container_metadata.at(i).first; Container_metadata.at(i).first = NULL; } Container_metadata.resize(SIZE(Container_metadata_snapshot)); } void clear_container_metadata() { Container_metadata_snapshot.clear(); for (int i = 0; i < SIZE(Container_metadata); ++i) { delete Container_metadata.at(i).first; Container_metadata.at(i).first = NULL; } Container_metadata.clear(); } //: do no work in size_of, simply lookup Container_metadata :(before "End size_of(reagent r) Special-cases") if (r.metadata.size) return r.metadata.size; :(before "End size_of(type) Special-cases") if (type->atom) { if (type->value == -1) return 1; // error value, but we'll raise it elsewhere if (type->value == 0) return 1; } const type_tree* root = root_type(type); if (!contains_key(Type, root->value)) { raise << "no such type " << root->value << '\n' << end(); return 0; } type_info t = get(Type, root->value); if (t.kind == CONTAINER) { // Compute size_of Container if (!contains_key(Container_metadata, type)) return 1; // error raised elsewhere return get(Container_metadata, type).size; } :(code) const type_tree* root_type(const type_tree* t) { const type_tree* result = t->atom ? t : t->left; assert(result->atom); return result; } //: precompute Container_metadata before we need size_of //: also store a copy in each reagent in each instruction in each recipe :(after "End Type Modifying Transforms") Transform.push_back(compute_container_sizes); // idempotent :(code) void compute_container_sizes(const recipe_ordinal r) { recipe& caller = get(Recipe, r); trace(9992, "transform") << "--- compute container sizes for " << caller.name << end(); for (int i = 0; i < SIZE(caller.steps); ++i) { instruction& inst = caller.steps.at(i); trace(9993, "transform") << "- compute container sizes for " << to_string(inst) << end(); for (int i = 0; i < SIZE(inst.ingredients); ++i) compute_container_sizes(inst.ingredients.at(i), " in '"+to_original_string(inst)+"'"); for (int i = 0; i < SIZE(inst.products); ++i) compute_container_sizes(inst.products.at(i), " in '"+to_original_string(inst)+"'"); } } void compute_container_sizes(reagent& r, const string& location_for_error_messages) { expand_type_abbreviations(r.type); if (is_literal(r) || is_dummy(r)) return; reagent rcopy = r; // Compute Container Size(reagent rcopy) set pending_metadata; // might actually be faster to just convert to string rather than compare type_tree directly; so far the difference is negligible compute_container_sizes(rcopy.type, pending_metadata, location_for_error_messages); if (contains_key(Container_metadata, rcopy.type)) r.metadata = get(Container_metadata, rcopy.type); } void compute_container_sizes(const type_tree* type, set& pending_metadata, const string& location_for_error_messages) { if (!type) return; trace(9993, "transform") << "compute container sizes for " << to_string(type) << end(); if (contains_key(Container_metadata, type)) return; if (contains_key(pending_metadata, *type)) return; pending_metadata.insert(*type); if (!type->atom) { assert(type->left->atom); if (type->left->name == "address") compute_container_sizes(type->right, pending_metadata, location_for_error_messages); // End compute_container_sizes Non-atom Special-cases return; } assert(type->atom); if (!contains_key(Type, type->value)) return; // error raised elsewhere type_info& info = get(Type, type->value); if (info.kind == CONTAINER) compute_container_sizes(info, type, pending_metadata, location_for_error_messages); // End compute_container_sizes Atom Special-cases } void compute_container_sizes(const type_info& container_info, const type_tree* full_type, set& pending_metadata, const string& location_for_error_messages) { assert(container_info.kind == CONTAINER); // size of a container is the sum of the sizes of its element // (So it can only contain arrays if they're static and include their // length in the type.) container_metadata metadata; for (int i = 0; i < SIZE(container_info.elements); ++i) { reagent/*copy*/ element = container_info.elements.at(i); // Compute Container Size(element, full_type) compute_container_sizes(element.type, pending_metadata, location_for_error_messages); metadata.offset.push_back(metadata.size); // save previous size as offset metadata.size += size_of(element.type); } Container_metadata.push_back(pair(new type_tree(*full_type), metadata)); } container_metadata& get(vector >& all, const type_tree* key) { for (int i = 0; i < SIZE(all); ++i) { if (matches(all.at(i).first, key)) return all.at(i).second; } tb_shutdown(); raise << "unknown size for type '" << to_string(key) << "'\n" << end(); assert(false); } bool contains_key(const vector >& all, const type_tree* key) { for (int i = 0; i < SIZE(all); ++i) { if (matches(all.at(i).first, key)) return true; } return false; } bool matches(const type_tree* a, const type_tree* b) { if (a == b) return true; if (!a || !b) return false; if (a->atom != b->atom) return false; if (a->atom) return a->value == b->value; return matches(a->left, b->left) && matches(a->right, b->right); } :(scenario stash_container) def main [ 1:num <- copy 34 # first 2:num <- copy 35 3:num <- copy 36 stash [foo:], 1:point-number/raw ] +app: foo: 34 35 36 //: for the following unit tests we'll do the work of the transform by hand :(before "End Unit Tests") void test_container_sizes() { // a container we don't have the size for reagent r("x:point"); CHECK(!contains_key(Container_metadata, r.type)); // scan compute_container_sizes(r, ""); // the reagent we scanned knows its size CHECK_EQ(r.metadata.size, 2); // the global table also knows its size CHECK(contains_key(Container_metadata, r.type)); CHECK_EQ(get(Container_metadata, r.type).size, 2); } void test_container_sizes_through_aliases() { // a new alias for a container put(Type_abbreviations, "pt", new_type_tree("point")); reagent r("x:pt"); // scan compute_container_sizes(r, ""); // the reagent we scanned knows its size CHECK_EQ(r.metadata.size, 2); // the global table also knows its size CHECK(contains_key(Container_metadata, r.type)); CHECK_EQ(get(Container_metadata, r.type).size, 2); } void test_container_sizes_nested() { // a container we don't have the size for reagent r("x:point-number"); CHECK(!contains_key(Container_metadata, r.type)); // scan compute_container_sizes(r, ""); // the reagent we scanned knows its size CHECK_EQ(r.metadata.size, 3); // the global table also knows its size CHECK(contains_key(Container_metadata, r.type)); CHECK_EQ(get(Container_metadata, r.type).size, 3); } void test_container_sizes_recursive() { // define a container containing an address to itself run("container foo [\n" " x:num\n" " y:address:foo\n" "]\n"); reagent r("x:foo"); compute_container_sizes(r, ""); CHECK_EQ(r.metadata.size, 2); } void test_container_sizes_from_address() { // a container we don't have the size for reagent container("x:point"); CHECK(!contains_key(Container_metadata, container.type)); // scanning an address to the container precomputes the size of the container reagent r("x:address:point"); compute_container_sizes(r, ""); CHECK(contains_key(Container_metadata, container.type)); CHECK_EQ(get(Container_metadata, container.type).size, 2); } //:: To access elements of a container, use 'get' //: 'get' takes a 'base' container and an 'offset' into it and returns the //: appropriate element of the container value. :(scenario get) def main [ 12:num <- copy 34 13:num <- copy 35 15:num <- get 12:point/raw, 1:offset # unsafe ] +mem: storing 35 in location 15 :(before "End Primitive Recipe Declarations") GET, :(before "End Primitive Recipe Numbers") put(Recipe_ordinal, "get", GET); :(before "End Primitive Recipe Checks") case GET: { if (SIZE(inst.ingredients) != 2) { raise << maybe(get(Recipe, r).name) << "'get' expects exactly 2 ingredients in '" << inst.original_string << "'\n" << end(); break; } reagent/*copy*/ base = inst.ingredients.at(0); // new copy for every invocation // Update GET base in Check if (!base.type) { raise << maybe(get(Recipe, r).name) << "first ingredient of 'get' should be a container, but got '" << inst.ingredients.at(0).original_string << "'\n" << end(); break; } const type_tree* base_type = base.type; // Update GET base_type in Check if (!base_type->atom || base_type->value == 0 || !contains_key(Type, base_type->value) || get(Type, base_type->value).kind != CONTAINER) { raise << maybe(get(Recipe, r).name) << "first ingredient of 'get' should be a container, but got '" << inst.ingredients.at(0).original_string << "'\n" << end(); break; } const reagent& offset = inst.ingredients.at(1); if (!is_literal(offset) || !is_mu_scalar(offset)) { raise << maybe(get(Recipe, r).name) << "second ingredient of 'get' should have type 'offset', but got '" << inst.ingredients.at(1).original_string << "'\n" << end(); break; } int offset_value = 0; if (is_integer(offset.name)) // later layers permit non-integer offsets offset_value = to_integer(offset.name); else offset_value = offset.value; if (offset_value < 0 || offset_value >= SIZE(get(Type, base_type->value).elements)) { raise << maybe(get(Recipe, r).name) << "invalid offset '" << offset_value << "' for '" << get(Type, base_type->value).name << "'\n" << end(); break; } if (inst.products.empty()) break; reagent/*copy*/ product = inst.products.at(0); // Update GET product in Check const reagent/*copy*/ element = element_type(base.type, offset_value); // not just base_type because later layers will introduce compound types if (!types_coercible(product, element)) { raise << maybe(get(Recipe, r).name) << "'get " << base.original_string << ", " << offset.original_string << "' should write to " << names_to_string_without_quotes(element.type) << " but '" << product.name << "' has type " << names_to_string_without_quotes(product.type) << '\n' << end(); break; } break; } :(before "End Primitive Recipe Implementations") case GET: { reagent/*copy*/ base = current_instruction().ingredients.at(0); // Update GET base in Run int base_address = base.value; if (base_address == 0) { raise << maybe(current_recipe_name()) << "tried to access location 0 in '" << to_original_string(current_instruction()) << "'\n" << end(); break; } const type_tree* base_type = base.type; // Update GET base_type in Run int offset = ingredients.at(1).at(0); if (offset < 0 || offset >= SIZE(get(Type, base_type->value).elements)) break; // copied from Check above assert(base.metadata.size); int src = base_address + base.metadata.offset.at(offset); trace(9998, "run") << "address to copy is " << src << end(); reagent/*copy*/ element = element_type(base.type, offset); // not just base_type because later layers will introduce compound types element.set_value(src); trace(9998, "run") << "its type is " << names_to_string(element.type) << end(); // Read element products.push_back(read_memory(element)); break; } :(code) const reagent element_type(const type_tree* type, int offset_value) { assert(offset_value >= 0); const type_tree* root = root_type(type); assert(contains_key(Type, root->value)); assert(!get(Type, root->value).name.empty()); const type_info& info = get(Type, root->value); assert(info.kind == CONTAINER); if (offset_value >= SIZE(info.elements)) return reagent(); // error handled elsewhere reagent/*copy*/ element = info.elements.at(offset_value); // End element_type Special-cases return element; } :(scenario get_handles_nested_container_elements) def main [ 12:num <- copy 34 13:num <- copy 35 14:num <- copy 36 15:num <- get 12:point-number/raw, 1:offset # unsafe ] +mem: storing 36 in location 15 :(scenario get_out_of_bounds) % Hide_errors = true; def main [ 12:num <- copy 34 13:num <- copy 35 14:num <- copy 36 get 12:point-number/raw, 2:offset # point-number occupies 3 locations but has only 2 fields; out of bounds ] +error: main: invalid offset '2' for 'point-number' :(scenario get_out_of_bounds_2) % Hide_errors = true; def main [ 12:num <- copy 34 13:num <- copy 35 14:num <- copy 36 get 12:point-number/raw, -1:offset ] +error: main: invalid offset '-1' for 'point-number' :(scenario get_product_type_mismatch) % Hide_errors = true; def main [ 12:num <- copy 34 13:num <- copy 35 14:num <- copy 36 15:address:num <- get 12:point-number/raw, 1:offset ] +error: main: 'get 12:point-number/raw, 1:offset' should write to number but '15' has type (address number) //: we might want to call 'get' without saving the results, say in a sandbox :(scenario get_without_product) def main [ 12:num <- copy 34 13:num <- copy 35 get 12:point/raw, 1:offset # unsafe ] # just don't die //:: To write to elements of containers, use 'put'. :(scenario put) def main [ 12:num <- copy 34 13:num <- copy 35 $clear-trace 12:point <- put 12:point, 1:offset, 36 ] +mem: storing 36 in location 13 -mem: storing 34 in location 12 :(before "End Primitive Recipe Declarations") PUT, :(before "End Primitive Recipe Numbers") put(Recipe_ordinal, "put", PUT); :(before "End Primitive Recipe Checks") case PUT: { if (SIZE(inst.ingredients) != 3) { raise << maybe(get(Recipe, r).name) << "'put' expects exactly 3 ingredients in '" << inst.original_string << "'\n" << end(); break; } reagent/*copy*/ base = inst.ingredients.at(0); // Update PUT base in Check if (!base.type) { raise << maybe(get(Recipe, r).name) << "first ingredient of 'put' should be a container, but got '" << inst.ingredients.at(0).original_string << "'\n" << end(); break; } const type_tree* base_type = base.type; // Update PUT base_type in Check if (!base_type->atom || base_type->value == 0 || !contains_key(Type, base_type->value) || get(Type, base_type->value).kind != CONTAINER) { raise << maybe(get(Recipe, r).name) << "first ingredient of 'put' should be a container, but got '" << inst.ingredients.at(0).original_string << "'\n" << end(); break; } reagent/*copy*/ offset = inst.ingredients.at(1); // Update PUT offset in Check if (!is_literal(offset) || !is_mu_scalar(offset)) { raise << maybe(get(Recipe, r).name) << "second ingredient of 'put' should have type 'offset', but got '" << inst.ingredients.at(1).original_string << "'\n" << end(); break; } int offset_value = 0; if (is_integer(offset.name)) { // later layers permit non-integer offsets offset_value = to_integer(offset.name); if (offset_value < 0 || offset_value >= SIZE(get(Type, base_type->value).elements)) { raise << maybe(get(Recipe, r).name) << "invalid offset '" << offset_value << "' for '" << get(Type, base_type->value).name << "'\n" << end(); break; } } else { offset_value = offset.value; } const reagent& value = inst.ingredients.at(2); const reagent& element = element_type(base.type, offset_value); // not just base_type because later layers will introduce compound types if (!types_coercible(element, value)) { raise << maybe(get(Recipe, r).name) << "'put " << base.original_string << ", " << offset.original_string << "' should write to " << names_to_string_without_quotes(element.type) << " but '" << value.name << "' has type " << names_to_string_without_quotes(value.type) << '\n' << end(); break; } if (inst.products.empty()) break; // no more checks necessary if (inst.products.at(0).name != inst.ingredients.at(0).name) { raise << maybe(get(Recipe, r).name) << "product of 'put' must be first ingredient '" << inst.ingredients.at(0).original_string << "', but got '" << inst.products.at(0).original_string << "'\n" << end(); break; } // End PUT Product Checks break; } :(before "End Primitive Recipe Implementations") case PUT: { reagent/*copy*/ base = current_instruction().ingredients.at(0); // Update PUT base in Run int base_address = base.value; if (base_address == 0) { raise << maybe(current_recipe_name()) << "tried to access location 0 in '" << to_original_string(current_instruction()) << "'\n" << end(); break; } const type_tree* base_type = base.type; // Update PUT base_type in Run int offset = ingredients.at(1).at(0); if (offset < 0 || offset >= SIZE(get(Type, base_type->value).elements)) break; // copied from Check above int address = base_address + base.metadata.offset.at(offset); trace(9998, "run") << "address to copy to is " << address << end(); // optimization: directly write the element rather than updating 'product' // and writing the entire container // Write Memory in PUT in Run for (int i = 0; i < SIZE(ingredients.at(2)); ++i) { trace(9999, "mem") << "storing " << no_scientific(ingredients.at(2).at(i)) << " in location " << address+i << end(); put(Memory, address+i, ingredients.at(2).at(i)); } goto finish_instruction; } :(scenario put_product_error) % Hide_errors = true; def main [ local-scope load-ingredients 1:point <- merge 34, 35 3:point <- put 1:point, x:offset, 36 ] +error: main: product of 'put' must be first ingredient '1:point', but got '3:point' //:: Allow containers to be defined in Mu code. :(scenarios load) :(scenario container) container foo [ x:num y:num ] +parse: --- defining container foo +parse: element: {x: "number"} +parse: element: {y: "number"} :(scenario container_use_before_definition) container foo [ x:num y:bar ] container bar [ x:num y:num ] +parse: --- defining container foo +parse: type number: 1000 +parse: element: {x: "number"} # todo: brittle # type bar is unknown at this point, but we assign it a number +parse: element: {y: "bar"} # later type bar geon +parse: --- defining container bar +parse: type number: 1001 +parse: element: {x: "number"} +parse: element: {y: "number"} //: if a container is defined again, the new fields add to the original definition :(scenarios run) :(scenario container_extend) container foo [ x:num ] # add to previous definition container foo [ y:num ] def main [ 1:num <- copy 34 2:num <- copy 35 3:num <- get 1:foo, 0:offset 4:num <- get 1:foo, 1:offset ] +mem: storing 34 in location 3 +mem: storing 35 in location 4 :(before "End Command Handlers") else if (command == "container") { insert_container(command, CONTAINER, in); } //: Even though we allow containers to be extended, we don't allow this after //: a call to transform_all. But we do want to detect this situation and raise //: an error. This field will help us raise such errors. :(before "End type_info Fields") int Num_calls_to_transform_all_at_first_definition; :(before "End type_info Constructor") Num_calls_to_transform_all_at_first_definition = -1; :(code) void insert_container(const string& command, kind_of_type kind, istream& in) { skip_whitespace_but_not_newline(in); string name = next_word(in); if (name.empty()) { assert(!has_data(in)); raise << "incomplete container definition at end of file (0)\n" << end(); return; } // End container Name Refinements trace(9991, "parse") << "--- defining " << command << ' ' << name << end(); if (!contains_key(Type_ordinal, name) || get(Type_ordinal, name) == 0) { put(Type_ordinal, name, Next_type_ordinal++); } trace(9999, "parse") << "type number: " << get(Type_ordinal, name) << end(); skip_bracket(in, "'"+command+"' must begin with '['"); type_info& info = get_or_insert(Type, get(Type_ordinal, name)); if (info.Num_calls_to_transform_all_at_first_definition == -1) { // initial definition of this container info.Num_calls_to_transform_all_at_first_definition = Num_calls_to_transform_all; } else if (info.Num_calls_to_transform_all_at_first_definition != Num_calls_to_transform_all) { // extension after transform_all raise << "there was a call to transform_all() between the definition of container '" << name << "' and a subsequent extension. This is not supported, since any recipes that used '" << name << "' values have already been transformed and \"frozen\".\n" << end(); return; } info.name = name; info.kind = kind; while (has_data(in)) { skip_whitespace_and_comments(in); string element = next_word(in); if (element.empty()) { assert(!has_data(in)); raise << "incomplete container definition at end of file (1)\n" << end(); return; } if (element == "]") break; if (in.peek() != '\n') { raise << command << " '" << name << "' contains multiple elements on a single line. Containers and exclusive containers must only contain elements, one to a line, no code.\n" << end(); // skip rest of container declaration while (has_data(in)) { skip_whitespace_and_comments(in); if (next_word(in) == "]") break; } break; } info.elements.push_back(reagent(element)); expand_type_abbreviations(info.elements.back().type); // todo: use abbreviation before declaration replace_unknown_types_with_unique_ordinals(info.elements.back().type, info); trace(9993, "parse") << " element: " << to_string(info.elements.back()) << end(); // End Load Container Element Definition } } void replace_unknown_types_with_unique_ordinals(type_tree* type, const type_info& info) { if (!type) return; if (!type->atom) { replace_unknown_types_with_unique_ordinals(type->left, info); replace_unknown_types_with_unique_ordinals(type->right, info); return; } assert(!type->name.empty()); if (contains_key(Type_ordinal, type->name)) { type->value = get(Type_ordinal, type->name); } // End insert_container Special-cases else if (type->name != "->") { // used in recipe types put(Type_ordinal, type->name, Next_type_ordinal++); type->value = get(Type_ordinal, type->name); } } void skip_bracket(istream& in, string message) { skip_whitespace_and_comments(in); if (in.get() != '[') raise << message << '\n' << end(); } :(scenario multi_word_line_in_container_declaration) % Hide_errors = true; container foo [ x:num y:num ] +error: container 'foo' contains multiple elements on a single line. Containers and exclusive containers must only contain elements, one to a line, no code. //: support type abbreviations in container definitions :(scenario type_abbreviations_in_containers) type foo = number container bar [ x:foo ] def main [ 1:num <- copy 34 2:foo <- get 1:bar/unsafe, 0:offset ] +mem: storing 34 in location 2 :(after "Transform.push_back(expand_type_abbreviations)") Transform.push_back(expand_type_abbreviations_in_containers); // idempotent :(code) // extremely inefficient; we process all types over and over again, once for every single recipe // but it doesn't seem to cause any noticeable slowdown void expand_type_abbreviations_in_containers(unused const recipe_ordinal r) { for (map::iterator p = Type.begin(); p != Type.end(); ++p) { for (int i = 0; i < SIZE(p->second.elements); ++i) expand_type_abbreviations(p->second.elements.at(i).type); } } //: ensure scenarios are consistent by always starting new container //: declarations at the same type number :(before "End Setup") //: for tests Next_type_ordinal = 1000; :(before "End Test Run Initialization") assert(Next_type_ordinal < 1000); :(code) void test_error_on_transform_all_between_container_definition_and_extension() { // define a container run("container foo [\n" " a:num\n" "]\n"); // try to extend the container after transform transform_all(); CHECK_TRACE_DOESNT_CONTAIN_ERROR(); Hide_errors = true; run("container foo [\n" " b:num\n" "]\n"); CHECK_TRACE_CONTAINS_ERROR(); } //:: Allow container definitions anywhere in the codebase, but complain if you //:: can't find a definition at the end. :(scenario run_complains_on_unknown_types) % Hide_errors = true; def main [ # integer is not a type 1:integer <- copy 0 ] +error: main: unknown type integer in '1:integer <- copy 0' :(scenario run_allows_type_definition_after_use) def main [ 1:bar <- copy 0/unsafe ] container bar [ x:num ] $error: 0 :(before "End Type Modifying Transforms") Transform.push_back(check_or_set_invalid_types); // idempotent :(code) void check_or_set_invalid_types(const recipe_ordinal r) { recipe& caller = get(Recipe, r); trace(9991, "transform") << "--- check for invalid types in recipe " << caller.name << end(); for (int index = 0; index < SIZE(caller.steps); ++index) { instruction& inst = caller.steps.at(index); for (int i = 0; i < SIZE(inst.ingredients); ++i) check_or_set_invalid_types(inst.ingredients.at(i), caller, inst); for (int i = 0; i < SIZE(inst.products); ++i) check_or_set_invalid_types(inst.products.at(i), caller, inst); } // End check_or_set_invalid_types } void check_or_set_invalid_types(reagent& r, const recipe& caller, const instruction& inst) { // Begin check_or_set_invalid_types(r) check_or_set_invalid_types(r.type, maybe(caller.name), "'"+inst.original_string+"'"); } void check_or_set_invalid_types(type_tree* type, const string& location_for_error_messages, const string& name_for_error_messages) { if (!type) return; // End Container Type Checks if (!type->atom) { check_or_set_invalid_types(type->left, location_for_error_messages, name_for_error_messages); check_or_set_invalid_types(type->right, location_for_error_messages, name_for_error_messages); return; } if (type->value == 0) return; if (!contains_key(Type, type->value)) { assert(!type->name.empty()); if (contains_key(Type_ordinal, type->name)) type->value = get(Type_ordinal, type->name); else raise << location_for_error_messages << "unknown type " << type->name << " in " << name_for_error_messages << '\n' << end(); } } :(scenario container_unknown_field) % Hide_errors = true; container foo [ x:num y:bar ] +error: foo: unknown type in y :(scenario read_container_with_bracket_in_comment) container foo [ x:num # ']' in comment y:num ] +parse: --- defining container foo +parse: element: {x: "number"} +parse: element: {y: "number"} :(scenario container_with_compound_field_type) container foo [ {x: (address array (address array character))} ] $error: 0 :(before "End transform_all") check_container_field_types(); :(code) void check_container_field_types() { for (map::iterator p = Type.begin(); p != Type.end(); ++p) { const type_info& info = p->second; // Check Container Field Types(info) for (int i = 0; i < SIZE(info.elements); ++i) check_invalid_types(info.elements.at(i).type, maybe(info.name), info.elements.at(i).name); } } void check_invalid_types(const type_tree* type, const string& location_for_error_messages, const string& name_for_error_messages) { if (!type) return; // will throw a more precise error elsewhere if (!type->atom) { check_invalid_types(type->left, location_for_error_messages, name_for_error_messages); check_invalid_types(type->right, location_for_error_messages, name_for_error_messages); return; } if (type->value != 0) { // value 0 = compound types (layer parse_tree) or type ingredients (layer shape_shifting_container) if (!contains_key(Type, type->value)) raise << location_for_error_messages << "unknown type in " << name_for_error_messages << '\n' << end(); } }