//: Containers contain a fixed number of elements of different types. :(before "End Mu Types Initialization") //: We'll use this container as a running example, with two number elements. type_number point = Type_number["point"] = Next_type_number++; Type[point].size = 2; Type[point].kind = container; Type[point].name = "point"; vector i; i.push_back(number); Type[point].elements.push_back(i); Type[point].elements.push_back(i); //: Containers can be copied around with a single instruction just like //: numbers, no matter how large they are. :(scenario copy_multiple_locations) recipe main [ 1:number <- copy 34:literal 2:number <- copy 35:literal 3:point <- copy 1:point ] +run: ingredient 0 is 1 +mem: location 1 is 34 +mem: location 2 is 35 +mem: storing 34 in location 3 +mem: storing 35 in location 4 :(before "End Mu Types Initialization") // A more complex container, containing another container as one of its // elements. type_number point_number = Type_number["point-number"] = Next_type_number++; Type[point_number].size = 2; Type[point_number].kind = container; Type[point_number].name = "point-number"; vector p2; p2.push_back(point); Type[point_number].elements.push_back(p2); vector i2; i2.push_back(number); Type[point_number].elements.push_back(i2); :(scenario copy_handles_nested_container_elements) recipe main [ 12:number <- copy 34:literal 13:number <- copy 35:literal 14:number <- copy 36:literal 15:point-number <- copy 12:point-number ] +mem: storing 36 in location 17 //: Containers can be checked for equality with a single instruction just like //: numbers, no matter how large they are. :(scenario compare_multiple_locations) recipe main [ 1:number <- copy 34:literal # first 2:number <- copy 35:literal 3:number <- copy 36:literal 4:number <- copy 34:literal # second 5:number <- copy 35:literal 6:number <- copy 36:literal 7:boolean <- equal 1:point-number, 4:point-number ] +mem: storing 1 in location 7 :(scenario compare_multiple_locations2) recipe main [ 1:number <- copy 34:literal # first 2:number <- copy 35:literal 3:number <- copy 36:literal 4:number <- copy 34:literal # second 5:number <- copy 35:literal 6:number <- copy 37:literal # different 7:boolean <- equal 1:point-number, 4:point-number ] +mem: storing 0 in location 7 :(before "End size_of(types) Cases") type_info t = Type[types.at(0)]; if (t.kind == container) { // size of a container is the sum of the sizes of its elements long long int result = 0; for (long long int i = 0; i < SIZE(t.elements); ++i) { result += size_of(t.elements.at(i)); } return result; } //:: To access elements of a container, use 'get' :(scenario get) recipe main [ 12:number <- copy 34:literal 13:number <- copy 35:literal 15:number <- get 12:point, 1:offset ] +run: instruction main/2 +run: ingredient 0 is 12 +run: ingredient 1 is 1 +run: address to copy is 13 +run: its type is 1 +mem: location 13 is 35 +run: product 0 is 15 +mem: storing 35 in location 15 :(before "End Primitive Recipe Declarations") GET, :(before "End Primitive Recipe Numbers") Recipe_number["get"] = GET; :(before "End Primitive Recipe Implementations") case GET: { reagent base = current_instruction().ingredients.at(0); long long int base_address = base.value; type_number base_type = base.types.at(0); assert(Type[base_type].kind == container); assert(isa_literal(current_instruction().ingredients.at(1))); assert(scalar(ingredients.at(1))); long long int offset = ingredients.at(1).at(0); long long int src = base_address; for (long long int i = 0; i < offset; ++i) { src += size_of(Type[base_type].elements.at(i)); } trace("run") << "address to copy is " << src; assert(Type[base_type].kind == container); assert(SIZE(Type[base_type].elements) > offset); type_number src_type = Type[base_type].elements.at(offset).at(0); trace("run") << "its type is " << src_type; reagent tmp; tmp.set_value(src); tmp.types.push_back(src_type); products.push_back(read_memory(tmp)); break; } :(scenario get_handles_nested_container_elements) recipe main [ 12:number <- copy 34:literal 13:number <- copy 35:literal 14:number <- copy 36:literal 15:number <- get 12:point-number, 1:offset ] +run: instruction main/2 +run: ingredient 0 is 12 +run: ingredient 1 is 1 +run: address to copy is 14 +run: its type is 1 +mem: location 14 is 36 +run: product 0 is 15 +mem: storing 36 in location 15 //:: To write to elements of containers, you need their address. :(scenario get_address) recipe main [ 12:number <- copy 34:literal 13:number <- copy 35:literal 15:address:number <- get-address 12:point, 1:offset ] +run: instruction main/2 +run: ingredient 0 is 12 +run: ingredient 1 is 1 +run: address to copy is 13 +mem: storing 13 in location 15 :(before "End Primitive Recipe Declarations") GET_ADDRESS, :(before "End Primitive Recipe Numbers") Recipe_number["get-address"] = GET_ADDRESS; :(before "End Primitive Recipe Implementations") case GET_ADDRESS: { reagent base = current_instruction().ingredients.at(0); long long int base_address = base.value; type_number base_type = base.types.at(0); assert(Type[base_type].kind == container); assert(isa_literal(current_instruction().ingredients.at(1))); assert(scalar(ingredients.at(1))); long long int offset = ingredients.at(1).at(0); long long int result = base_address; for (long long int i = 0; i < offset; ++i) { result += size_of(Type[base_type].elements.at(i)); } trace("run") << "address to copy is " << result; products.resize(1); products.at(0).push_back(result); break; } //:: Allow containers to be defined in mu code. :(scenarios load) :(scenario container) container foo [ x:number y:number ] +parse: reading container foo +parse: element name: x +parse: type: 1 +parse: element name: y +parse: type: 1 :(before "End Command Handlers") else if (command == "container") { insert_container(command, container, in); } :(code) void insert_container(const string& command, kind_of_type kind, istream& in) { skip_whitespace(in); string name = next_word(in); trace("parse") << "reading " << command << ' ' << name; //? cout << name << '\n'; //? 2 //? if (Type_number.find(name) != Type_number.end()) //? 1 //? cerr << Type_number[name] << '\n'; //? 1 if (Type_number.find(name) == Type_number.end() || Type_number[name] == 0) { Type_number[name] = Next_type_number++; } skip_bracket(in, "'container' must begin with '['"); assert(Type.find(Type_number[name]) == Type.end()); type_info& t = Type[Type_number[name]]; recently_added_types.push_back(Type_number[name]); t.name = name; t.kind = kind; while (!in.eof()) { skip_whitespace_and_comments(in); string element = next_word(in); if (element == "]") break; istringstream inner(element); t.element_names.push_back(slurp_until(inner, ':')); trace("parse") << " element name: " << t.element_names.back(); vector types; while (!inner.eof()) { string type_name = slurp_until(inner, ':'); if (Type_number.find(type_name) == Type_number.end()) raise << "unknown type " << type_name << '\n'; types.push_back(Type_number[type_name]); trace("parse") << " type: " << types.back(); } t.elements.push_back(types); } assert(SIZE(t.elements) == SIZE(t.element_names)); t.size = SIZE(t.elements); } //: ensure types created in one scenario don't leak outside it. :(before "End Globals") vector recently_added_types; :(before "End load_permanently") //: for non-tests recently_added_types.clear(); :(before "End Setup") //: for tests for (long long int i = 0; i < SIZE(recently_added_types); ++i) { //? cout << "erasing " << Type[recently_added_types.at(i)].name << '\n'; //? 1 Type_number.erase(Type[recently_added_types.at(i)].name); Type.erase(recently_added_types.at(i)); } recently_added_types.clear(); //: lastly, ensure scenarios are consistent by always starting them at the //: same type number. Next_type_number = 1000; :(before "End Test Run Initialization") assert(Next_type_number < 1000); :(before "End Setup") Next_type_number = 1000; //:: helpers :(code) void skip_bracket(istream& in, string message) { skip_whitespace_and_comments(in); if (in.get() != '[') raise << message << '\n'; }