//: Addresses help us spend less time copying data around. //: So far we've been operating on primitives like numbers and characters, and //: we've started combining these primitives together into larger logical //: units (containers or arrays) that may contain many different primitives at //: once. Containers and arrays can grow quite large in complex programs, and //: we'd like some way to efficiently share them between recipes without //: constantly having to make copies. Right now 'next-ingredient' and 'reply' //: copy data across recipe boundaries. To avoid copying large quantities of //: data around, we'll use *addresses*. An address is a bookmark to some //: arbitrary quantity of data (the *payload*). It's a primitive, so it's as //: efficient to copy as a number. To read or modify the payload 'pointed to' //: by an address, we'll perform a *lookup*. //: //: The notion of 'lookup' isn't an instruction like 'add' or 'subtract'. //: Instead it's an operation that can be performed when reading any of the //: ingredients of an instruction, and when writing to any of the products. To //: write to the payload of an ingredient rather than its value, simply add //: the /lookup property to it. Modern computers provide efficient support for //: addresses and lookups, making this a realistic feature. //: //: To recap: an address is a bookmark to some potentially large payload, and //: you can replace any ingredient or product with a lookup to an address of //: the appropriate type. But how do we get addresses to begin with? That //: requires a little more explanation. Once we introduce the notion of //: bookmarks to data, we have to think about the life cycle of a piece of //: data and its bookmarks (because remember, bookmarks can be copied around //: just like anything else). Otherwise several bad outcomes can result (and //: indeed *have* resulted in past languages like C): //: //: a) You can run out of memory if you don't have a way to reclaim //: data. //: b) If you allow data to be reclaimed, you have to be careful not to //: leave any stale addresses pointing at it. Otherwise your program might //: try to lookup such an address and find something unexpected. Such //: problems can be very hard to track down, and they can also be exploited //: to break into your computer over the network, etc. //: //: To avoid these problems, we introduce the notion of a *reference count* or //: refcount. The life cycle of a bit of data accessed through addresses looks //: like this. //: //: We create space in computer memory for it using the 'new' instruction. //: The 'new' instruction takes a type as an ingredient, allocates //: sufficient space to hold that type, and returns an address (bookmark) //: to the allocated space. //: //: x:address:number <- new number:type //: //: +------------+ //: x -------> | number | //: +------------+ //: //: That isn't entirely accurate. Under the hood, 'new' allocates an extra //: number -- the refcount: //: //: +------------+------------+ //: x -------> | refcount | number | //: +------------+------------+ //: //: This probably seems like a waste of space. In practice it isn't worth //: allocating individual numbers and our payload will tend to be larger, //: so the picture would look more like this (zooming out a bit): //: //: +-------------------------+ //: +---+ | //: x -------> | r | | //: +---+ DATA | //: | | //: | | //: +-------------------------+ //: //: (Here 'r' denotes the refcount. It occupies a tiny amount of space //: compared to the payload.) //: //: Anyways, back to our example where the data is just a single number. //: After the call to 'new', Mu's map of memory looks like this: //: //: +---+------------+ //: x -------> | 1 | number | //: +---+------------+ //: //: The refcount of 1 here indicates that this number has one bookmark //: outstanding. If you then make a copy of x, the refcount increments: //: //: y:address:number <- copy x //: //: x ---+ +---+------------+ //: +---> | 2 | number | //: y ---+ +---+------------+ //: //: Whether you access the payload through x or y, Mu knows how many //: bookmarks are outstanding to it. When you change x or y, the refcount //: transparently decrements: //: //: x <- copy 0 # an address is just a number, you can always write 0 to it //: //: +---+------------+ //: y -------> | 1 | number | //: +---+------------+ //: //: The final flourish is what happens when the refcount goes down to 0: Mu //: reclaims the space occupied by both refcount and payload in memory, and //: they're ready to be reused by later calls to 'new'. //: //: y <- copy 0 //: //: +---+------------+ //: | 0 | XXXXXXX | //: +---+------------+ //: //: Using refcounts fixes both our problems a) and b) above: you can use //: memory for many different purposes as many times as you want without //: running out of memory, and you don't have to worry about ever leaving a //: dangling bookmark when you reclaim memory. //: //: Ok, let's rewind the clock back to this situation where we have an //: address: //: //: +---+------------+ //: x -------> | 1 | number | //: +---+------------+ //: //: Once you have an address you can read or modify its payload by performing //: a lookup: //: //: x/lookup <- copy 34 //: //: or more concisely: //: //: *x <- copy 34 //: //: This modifies not x, but the payload x points to: //: //: +---+------------+ //: x -------> | 1 | 34 | //: +---+------------+ //: //: You can also read from the payload in instructions like this: //: //: z:number <- add *x, 1 //: //: After this instruction runs the value of z will be 35. //: //: The rest of this (long) layer is divided up into 4 sections: //: the implementation of the 'new' instruction //: how instructions lookup addresses //: how instructions update refcounts when modifying address variables //: how instructions abandon and reclaim memory when refcounts drop to 0 //:: the 'new' instruction allocates unique memory including a refcount //: todo: give 'new' a custodian ingredient. Following malloc/free is a temporary hack. :(scenario new) # call 'new' two times with identical types without modifying the results; you # should get back different results def main [ 1:address:number/raw <- new number:type 2:address:number/raw <- new number:type 3:boolean/raw <- equal 1:address:number/raw, 2:address:number/raw ] +mem: storing 0 in location 3 //: 'new' takes a weird 'type' as its first ingredient; don't error on it :(before "End Mu Types Initialization") put(Type_ordinal, "type", 0); :(code) bool is_mu_type_literal(reagent r) { return is_literal(r) && r.type && r.type->name == "type"; } :(before "End Primitive Recipe Declarations") NEW, :(before "End Primitive Recipe Numbers") put(Recipe_ordinal, "new", NEW); :(before "End Primitive Recipe Checks") case NEW: { const recipe& caller = get(Recipe, r); if (inst.ingredients.empty() || SIZE(inst.ingredients) > 2) { raise << maybe(caller.name) << "'new' requires one or two ingredients, but got " << to_original_string(inst) << '\n' << end(); break; } // End NEW Check Special-cases reagent type = inst.ingredients.at(0); if (!is_mu_type_literal(type)) { raise << maybe(caller.name) << "first ingredient of 'new' should be a type, but got " << type.original_string << '\n' << end(); break; } if (inst.products.empty()) { raise << maybe(caller.name) << "result of 'new' should never be ignored\n" << end(); break; } if (!product_of_new_is_valid(inst)) { raise << maybe(caller.name) << "product of 'new' has incorrect type: " << to_original_string(inst) << '\n' << end(); break; } break; } :(code) bool product_of_new_is_valid(const instruction& inst) { reagent product = inst.products.at(0); canonize_type(product); if (!product.type || product.type->value != get(Type_ordinal, "address")) return false; drop_from_type(product, "address"); if (SIZE(inst.ingredients) > 1) { // array allocation if (!product.type || product.type->value != get(Type_ordinal, "array")) return false; drop_from_type(product, "array"); } reagent expected_product("x:"+inst.ingredients.at(0).name); // End Post-processing(expected_product) When Checking 'new' return types_strictly_match(product, expected_product); } //: To implement 'new', a Mu transform turns all 'new' instructions into //: 'allocate' instructions that precompute the amount of memory they want to //: allocate. //: Ensure that we never call 'allocate' directly, and that there's no 'new' //: instructions left after the transforms have run. :(before "End Primitive Recipe Checks") case ALLOCATE: { raise << "never call 'allocate' directly'; always use 'new'\n" << end(); break; } :(before "End Primitive Recipe Implementations") case NEW: { raise << "no implementation for 'new'; why wasn't it translated to 'allocate'? Please save a copy of your program and send it to Kartik.\n" << end(); break; } :(after "Transform.push_back(check_instruction)") // check_instruction will guard against direct 'allocate' instructions below Transform.push_back(transform_new_to_allocate); // idempotent :(code) void transform_new_to_allocate(const recipe_ordinal r) { trace(9991, "transform") << "--- convert 'new' to 'allocate' for recipe " << get(Recipe, r).name << end(); for (int i = 0; i < SIZE(get(Recipe, r).steps); ++i) { instruction& inst = get(Recipe, r).steps.at(i); // Convert 'new' To 'allocate' if (inst.name == "new") { inst.operation = ALLOCATE; string_tree* type_name = new string_tree(inst.ingredients.at(0).name); // End Post-processing(type_name) When Converting 'new' type_tree* type = new_type_tree(type_name); inst.ingredients.at(0).set_value(size_of(type)); trace(9992, "new") << "size of " << to_string(type_name) << " is " << inst.ingredients.at(0).value << end(); delete type; delete type_name; } } } //: implement 'allocate' based on size :(before "End Globals") const int Reserved_for_tests = 1000; int Memory_allocated_until = Reserved_for_tests; int Initial_memory_per_routine = 100000; :(before "End Setup") Memory_allocated_until = Reserved_for_tests; Initial_memory_per_routine = 100000; :(before "End routine Fields") int alloc, alloc_max; :(before "End routine Constructor") alloc = Memory_allocated_until; Memory_allocated_until += Initial_memory_per_routine; alloc_max = Memory_allocated_until; trace(9999, "new") << "routine allocated memory from " << alloc << " to " << alloc_max << end(); :(before "End Primitive Recipe Declarations") ALLOCATE, :(before "End Primitive Recipe Numbers") put(Recipe_ordinal, "allocate", ALLOCATE); :(before "End Primitive Recipe Implementations") case ALLOCATE: { // compute the space we need int size = ingredients.at(0).at(0); if (SIZE(ingredients) > 1) { // array allocation trace(9999, "mem") << "array size is " << ingredients.at(1).at(0) << end(); size = /*space for length*/1 + size*ingredients.at(1).at(0); } // include space for refcount size++; trace(9999, "mem") << "allocating size " << size << end(); //? Total_alloc += size; //? Num_alloc++; // compute the region of memory to return // really crappy at the moment ensure_space(size); const int result = Current_routine->alloc; trace(9999, "mem") << "new alloc: " << result << end(); // save result products.resize(1); products.at(0).push_back(result); // initialize allocated space for (int address = result; address < result+size; ++address) put(Memory, address, 0); if (SIZE(current_instruction().ingredients) > 1) { // initialize array length trace(9999, "mem") << "storing " << ingredients.at(1).at(0) << " in location " << result+/*skip refcount*/1 << end(); put(Memory, result+/*skip refcount*/1, ingredients.at(1).at(0)); } Current_routine->alloc += size; // no support yet for reclaiming memory between routines assert(Current_routine->alloc <= Current_routine->alloc_max); break; } //: statistics for debugging //? :(before "End Globals") //? int Total_alloc = 0; //? int Num_alloc = 0; //? int Total_free = 0; //? int Num_free = 0; //? :(before "End Setup") //? Total_alloc = Num_alloc = Total_free = Num_free = 0; //? :(before "End Teardown") //? cerr << Total_alloc << "/" << Num_alloc //? << " vs " << Total_free << "/" << Num_free << '\n'; //? cerr << SIZE(Memory) << '\n'; :(code) void ensure_space(int size) { if (size > Initial_memory_per_routine) { tb_shutdown(); cerr << "can't allocate " << size << " locations, that's too much compared to " << Initial_memory_per_routine << ".\n"; exit(0); } if (Current_routine->alloc + size > Current_routine->alloc_max) { // waste the remaining space and create a new chunk Current_routine->alloc = Memory_allocated_until; Memory_allocated_until += Initial_memory_per_routine; Current_routine->alloc_max = Memory_allocated_until; trace(9999, "new") << "routine allocated memory from " << Current_routine->alloc << " to " << Current_routine->alloc_max << end(); } } :(scenario new_initializes) % Memory_allocated_until = 10; % put(Memory, Memory_allocated_until, 1); def main [ 1:address:number <- new number:type 2:number <- copy 1:address:number/lookup ] +mem: storing 0 in location 2 :(scenario new_error) % Hide_errors = true; def main [ 1:number/raw <- new number:type ] +error: main: product of 'new' has incorrect type: 1:number/raw <- new number:type :(scenario new_array) def main [ 1:address:array:number/raw <- new number:type, 5 2:address:number/raw <- new number:type 3:number/raw <- subtract 2:address:number/raw, 1:address:array:number/raw ] +run: {1: ("address" "array" "number"), "raw": ()} <- new {number: "type"}, {5: "literal"} +mem: array size is 5 # don't forget the extra location for array size, and the second extra location for the refcount +mem: storing 7 in location 3 :(scenario new_empty_array) def main [ 1:address:array:number/raw <- new number:type, 0 2:address:number/raw <- new number:type 3:number/raw <- subtract 2:address:number/raw, 1:address:array:number/raw ] +run: {1: ("address" "array" "number"), "raw": ()} <- new {number: "type"}, {0: "literal"} +mem: array size is 0 # one location for array size, and one for the refcount +mem: storing 2 in location 3 //: If a routine runs out of its initial allocation, it should allocate more. :(scenario new_overflow) % Initial_memory_per_routine = 3; // barely enough room for point allocation below def main [ 1:address:number/raw <- new number:type 2:address:point/raw <- new point:type # not enough room in initial page ] +new: routine allocated memory from 1000 to 1003 +new: routine allocated memory from 1003 to 1006 //:: /lookup can go from an address to the payload it points at, skipping the refcount //: the tests in this section use unsafe operations so as to stay decoupled from 'new' :(scenario copy_indirect) def main [ 1:address:number <- copy 10/unsafe 11:number <- copy 34 # This loads location 1 as an address and looks up *that* location. 2:number <- copy 1:address:number/lookup ] # 1 contains 10. Skip refcount and lookup location 11. +mem: storing 34 in location 2 :(before "End Preprocess read_memory(x)") canonize(x); //: similarly, write to addresses pointing at other locations using the //: 'lookup' property :(scenario store_indirect) def main [ 1:address:number <- copy 10/unsafe 1:address:number/lookup <- copy 34 ] +mem: storing 34 in location 11 :(before "End Preprocess write_memory(x)") canonize(x); if (x.value == 0) { raise << "can't write to location 0 in '" << to_original_string(current_instruction()) << "'\n" << end(); return; } //: writes to address 0 always loudly fail :(scenario store_to_0_fails) % Hide_errors = true; def main [ 1:address:number <- copy 0 1:address:number/lookup <- copy 34 ] -mem: storing 34 in location 0 +error: can't write to location 0 in '1:address:number/lookup <- copy 34' :(code) void canonize(reagent& x) { if (is_literal(x)) return; // End canonize(x) Special-cases while (has_property(x, "lookup")) lookup_memory(x); } void lookup_memory(reagent& x) { if (!x.type || x.type->value != get(Type_ordinal, "address")) { raise << maybe(current_recipe_name()) << "tried to /lookup " << x.original_string << " but it isn't an address\n" << end(); return; } // compute value if (x.value == 0) { raise << maybe(current_recipe_name()) << "tried to /lookup 0\n" << end(); return; } trace(9999, "mem") << "location " << x.value << " is " << no_scientific(get_or_insert(Memory, x.value)) << end(); x.set_value(get_or_insert(Memory, x.value)); drop_from_type(x, "address"); if (x.value != 0) { trace(9999, "mem") << "skipping refcount at " << x.value << end(); x.set_value(x.value+1); // skip refcount } drop_one_lookup(x); } void test_lookup_address_skips_refcount() { reagent x("*x:address:number"); x.set_value(34); // unsafe put(Memory, 34, 1000); lookup_memory(x); CHECK_TRACE_CONTENTS("mem: skipping refcount at 1000"); CHECK_EQ(x.value, 1001); } void test_lookup_zero_address_does_not_skip_refcount() { reagent x("*x:address:number"); x.set_value(34); // unsafe put(Memory, 34, 0); lookup_memory(x); CHECK_TRACE_DOESNT_CONTAIN("mem: skipping refcount at 0"); CHECK_EQ(x.value, 0); } :(after "bool types_strictly_match(reagent to, reagent from)") if (!canonize_type(to)) return false; if (!canonize_type(from)) return false; :(after "bool is_mu_array(reagent r)") if (!canonize_type(r)) return false; :(after "bool is_mu_address(reagent r)") if (!canonize_type(r)) return false; :(after "bool is_mu_number(reagent r)") if (!canonize_type(r)) return false; :(after "bool is_mu_boolean(reagent r)") if (!canonize_type(r)) return false; :(after "Update product While Type-checking Merge") if (!canonize_type(product)) continue; :(before "End Compute Call Ingredient") canonize_type(ingredient); :(before "End Preprocess NEXT_INGREDIENT product") canonize_type(product); :(before "End Check RETURN Copy(lhs, rhs) canonize_type(lhs); canonize_type(rhs); :(before "Compute Container Metadata(reagent rcopy)") if (!canonize_type(rcopy)) return; :(before "Compute Container Metadata(element)") assert(!has_property(element, "lookup")); :(code) bool canonize_type(reagent& r) { while (has_property(r, "lookup")) { if (!r.type || r.type->value != get(Type_ordinal, "address")) { raise << "can't lookup non-address: " << to_string(r) << ": " << to_string(r.type) << '\n' << end(); return false; } drop_from_type(r, "address"); drop_one_lookup(r); } return true; } void drop_from_type(reagent& r, string expected_type) { if (r.type->name != expected_type) { raise << "can't drop2 " << expected_type << " from " << to_string(r) << '\n' << end(); return; } type_tree* tmp = r.type; r.type = tmp->right; tmp->right = NULL; delete tmp; } void drop_one_lookup(reagent& r) { for (vector >::iterator p = r.properties.begin(); p != r.properties.end(); ++p) { if (p->first == "lookup") { r.properties.erase(p); return; } } assert(false); } //: Tedious fixup to support addresses in container/array instructions of previous layers. //: Most instructions don't require fixup if they use the 'ingredients' and //: 'products' variables in run_current_routine(). :(scenario get_indirect) def main [ 1:address:point <- copy 10/unsafe # 10 reserved for refcount 11:number <- copy 34 12:number <- copy 35 2:number <- get 1:address:point/lookup, 0:offset ] +mem: storing 34 in location 2 :(scenario get_indirect2) def main [ 1:address:point <- copy 10/unsafe # 10 reserved for refcount 11:number <- copy 34 12:number <- copy 35 2:address:number <- copy 20/unsafe 2:address:number/lookup <- get 1:address:point/lookup, 0:offset ] +mem: storing 34 in location 21 :(scenario include_nonlookup_properties) def main [ 1:address:point <- copy 10/unsafe # 10 reserved for refcount 11:number <- copy 34 12:number <- copy 35 2:number <- get 1:address:point/lookup/foo, 0:offset ] +mem: storing 34 in location 2 :(after "Update GET base in Check") if (!canonize_type(base)) break; :(after "Update GET product in Check") if (!canonize_type(product)) break; :(after "Update GET base in Run") canonize(base); :(scenario put_indirect) def main [ 1:address:point <- copy 10/unsafe # 10 reserved for refcount 11:number <- copy 34 12:number <- copy 35 1:address:point/lookup <- put 1:address:point/lookup, 0:offset, 36 ] +mem: storing 36 in location 11 :(after "Update PUT base in Check") if (!canonize_type(base)) break; :(after "Update PUT offset in Check") if (!canonize_type(offset)) break; :(after "Update PUT base in Run") canonize(base); :(scenario copy_array_indirect) def main [ # 10 reserved for refcount 11:array:number:3 <- create-array 12:number <- copy 14 13:number <- copy 15 14:number <- copy 16 1:address:array:number <- copy 10/unsafe 2:array:number <- copy 1:address:array:number/lookup ] +mem: storing 3 in location 2 +mem: storing 14 in location 3 +mem: storing 15 in location 4 +mem: storing 16 in location 5 :(before "Update CREATE_ARRAY product in Check") // 'create-array' does not support indirection. Static arrays are meant to be // allocated on the 'stack'. assert(!has_property(product, "lookup")); :(before "Update CREATE_ARRAY product in Run") // 'create-array' does not support indirection. Static arrays are meant to be // allocated on the 'stack'. assert(!has_property(product, "lookup")); :(scenario index_indirect) def main [ # 10 reserved for refcount 11:array:number:3 <- create-array 12:number <- copy 14 13:number <- copy 15 14:number <- copy 16 1:address:array:number <- copy 10/unsafe 2:number <- index 1:address:array:number/lookup, 1 ] +mem: storing 15 in location 2 :(before "Update INDEX base in Check") if (!canonize_type(base)) break; :(before "Update INDEX index in Check") if (!canonize_type(index)) break; :(before "Update INDEX product in Check") if (!canonize_type(product)) break; :(before "Update INDEX base in Run") canonize(base); :(before "Update INDEX index in Run") canonize(index); :(scenario put_index_indirect) def main [ # 10 reserved for refcount 11:array:number:3 <- create-array 12:number <- copy 14 13:number <- copy 15 14:number <- copy 16 1:address:array:number <- copy 10/unsafe 1:address:array:number/lookup <- put-index 1:address:array:number/lookup, 1, 34 ] +mem: storing 34 in location 13 :(scenario put_index_indirect_2) def main [ 1:array:number:3 <- create-array 2:number <- copy 14 3:number <- copy 15 4:number <- copy 16 5:address:number <- copy 10/unsafe # 10 reserved for refcount 11:number <- copy 1 5:address:array:number/lookup <- put-index 1:array:number:3, 5:address:number/lookup, 34 ] +mem: storing 34 in location 3 :(before "Update PUT_INDEX base in Check") if (!canonize_type(base)) break; :(before "Update PUT_INDEX index in Check") if (!canonize_type(index)) break; :(before "Update PUT_INDEX value in Check") if (!canonize_type(value)) break; :(before "Update PUT_INDEX base in Run") canonize(base); :(before "Update PUT_INDEX index in Run") canonize(index); :(scenario length_indirect) def main [ # 10 reserved for refcount 11:array:number:3 <- create-array 12:number <- copy 14 13:number <- copy 15 14:number <- copy 16 1:address:array:number <- copy 10/unsafe 2:number <- length 1:address:array:number/lookup ] +mem: storing 3 in location 2 :(before "Update LENGTH array in Check") if (!canonize_type(array)) break; :(before "Update LENGTH array in Run") canonize(array); :(scenario maybe_convert_indirect) def main [ # 10 reserved for refcount 11:number-or-point <- merge 0/number, 34 1:address:number-or-point <- copy 10/unsafe 2:number, 3:boolean <- maybe-convert 1:address:number-or-point/lookup, i:variant ] +mem: storing 34 in location 2 +mem: storing 1 in location 3 :(scenario maybe_convert_indirect_2) def main [ # 10 reserved for refcount 11:number-or-point <- merge 0/number, 34 1:address:number-or-point <- copy 10/unsafe 2:address:number <- copy 20/unsafe 2:address:number/lookup, 3:boolean <- maybe-convert 1:address:number-or-point/lookup, i:variant ] +mem: storing 34 in location 21 +mem: storing 1 in location 3 :(scenario maybe_convert_indirect_3) def main [ # 10 reserved for refcount 11:number-or-point <- merge 0/number, 34 1:address:number-or-point <- copy 10/unsafe 2:address:boolean <- copy 20/unsafe 3:number, 2:address:boolean/lookup <- maybe-convert 1:address:number-or-point/lookup, i:variant ] +mem: storing 34 in location 3 +mem: storing 1 in location 21 :(before "Update MAYBE_CONVERT base in Check") if (!canonize_type(base)) break; :(before "Update MAYBE_CONVERT product in Check") if (!canonize_type(product)) break; :(before "Update MAYBE_CONVERT status in Check") if (!canonize_type(status)) break; :(before "Update MAYBE_CONVERT base in Run") canonize(base); :(before "Update MAYBE_CONVERT product in Run") canonize(product); :(before "Update MAYBE_CONVERT status in Run") canonize(status); :(scenario merge_exclusive_container_indirect) def main [ 1:address:number-or-point <- copy 10/unsafe 1:address:number-or-point/lookup <- merge 0/number, 34 ] # skip 10 for refcount +mem: storing 0 in location 11 +mem: storing 34 in location 12 :(before "Update size_mismatch Check for MERGE(x) canonize(x); //: abbreviation for '/lookup': a prefix '*' :(scenario lookup_abbreviation) def main [ 1:address:number <- copy 10/unsafe # 10 reserved for refcount 11:number <- copy 34 3:number <- copy *1:address:number ] +parse: ingredient: {1: ("address" "number"), "lookup": ()} +mem: storing 34 in location 3 :(before "End Parsing reagent") { while (!name.empty() && name.at(0) == '*') { name.erase(0, 1); properties.push_back(pair("lookup", NULL)); } if (name.empty()) raise << "illegal name " << original_string << '\n' << end(); } //:: update refcounts when copying addresses :(scenario refcounts) def main [ 1:address:number <- copy 1000/unsafe 2:address:number <- copy 1:address:number 1:address:number <- copy 0 2:address:number <- copy 0 ] +run: {1: ("address" "number")} <- copy {1000: "literal", "unsafe": ()} +mem: incrementing refcount of 1000: 0 -> 1 +run: {2: ("address" "number")} <- copy {1: ("address" "number")} +mem: incrementing refcount of 1000: 1 -> 2 +run: {1: ("address" "number")} <- copy {0: "literal"} +mem: decrementing refcount of 1000: 2 -> 1 +run: {2: ("address" "number")} <- copy {0: "literal"} +mem: decrementing refcount of 1000: 1 -> 0 # the /unsafe corrupts memory but fortunately we won't be running any more 'new' in this scenario +mem: automatically abandoning 1000 :(before "End write_memory(reagent x) Special-cases") if (x.type->value == get(Type_ordinal, "address")) { // compute old address of x, as well as new address we want to write in int old_address = get_or_insert(Memory, x.value); assert(scalar(data)); int new_address = data.at(0); // decrement refcount of old address if (old_address) { int old_refcount = get_or_insert(Memory, old_address); trace(9999, "mem") << "decrementing refcount of " << old_address << ": " << old_refcount << " -> " << (old_refcount-1) << end(); put(Memory, old_address, old_refcount-1); } // perform the write trace(9999, "mem") << "storing " << no_scientific(data.at(0)) << " in location " << x.value << end(); put(Memory, x.value, new_address); // increment refcount of new address if (new_address) { int new_refcount = get_or_insert(Memory, new_address); assert(new_refcount >= 0); // == 0 only when new_address == old_address trace(9999, "mem") << "incrementing refcount of " << new_address << ": " << new_refcount << " -> " << (new_refcount+1) << end(); put(Memory, new_address, new_refcount+1); } // abandon old address if necessary // do this after all refcount updates are done just in case old and new are identical assert(old_address >= 0); if (old_address == 0) return; if (get_or_insert(Memory, old_address) < 0) { DUMP(""); cerr << old_address << ' ' << get_or_insert(Memory, old_address) << '\n'; } assert(get_or_insert(Memory, old_address) >= 0); if (get_or_insert(Memory, old_address) > 0) return; // lookup_memory without drop_one_lookup { trace(9999, "mem") << "automatically abandoning " << old_address << end(); trace(9999, "mem") << "computing size to abandon at " << x.value << end(); x.set_value(old_address+/*skip refcount*/1); drop_from_type(x, "address"); // } abandon(old_address, size_of(x)+/*refcount*/1); return; } :(scenario refcounts_2) def main [ 1:address:number <- new number:type # over-writing one allocation with another 1:address:number <- new number:type 1:address:number <- copy 0 ] +run: {1: ("address" "number")} <- new {number: "type"} +mem: incrementing refcount of 1000: 0 -> 1 +run: {1: ("address" "number")} <- new {number: "type"} +mem: automatically abandoning 1000 :(scenario refcounts_3) def main [ 1:address:number <- new number:type # passing in addresses to recipes increments refcount foo 1:address:number 1:address:number <- copy 0 ] def foo [ 2:address:number <- next-ingredient # return does NOT yet decrement refcount; memory must be explicitly managed 2:address:number <- copy 0 ] +run: {1: ("address" "number")} <- new {number: "type"} +mem: incrementing refcount of 1000: 0 -> 1 +run: {2: ("address" "number")} <- next-ingredient +mem: incrementing refcount of 1000: 1 -> 2 +run: {2: ("address" "number")} <- copy {0: "literal"} +mem: decrementing refcount of 1000: 2 -> 1 +run: {1: ("address" "number")} <- copy {0: "literal"} +mem: decrementing refcount of 1000: 1 -> 0 +mem: automatically abandoning 1000 :(scenario refcounts_4) def main [ 1:address:number <- new number:type # idempotent copies leave refcount unchanged 1:address:number <- copy 1:address:number ] +run: {1: ("address" "number")} <- new {number: "type"} +mem: incrementing refcount of 1000: 0 -> 1 +run: {1: ("address" "number")} <- copy {1: ("address" "number")} +mem: decrementing refcount of 1000: 1 -> 0 +mem: incrementing refcount of 1000: 0 -> 1 :(scenario refcounts_5) def main [ 1:address:number <- new number:type # passing in addresses to recipes increments refcount foo 1:address:number # return does NOT yet decrement refcount; memory must be explicitly managed 1:address:number <- new number:type ] def foo [ 2:address:number <- next-ingredient ] +run: {1: ("address" "number")} <- new {number: "type"} +mem: incrementing refcount of 1000: 0 -> 1 +run: {2: ("address" "number")} <- next-ingredient +mem: incrementing refcount of 1000: 1 -> 2 +run: {1: ("address" "number")} <- new {number: "type"} +mem: decrementing refcount of 1000: 2 -> 1 :(scenario refcounts_array) def main [ 1:number <- copy 30 # allocate an array 10:address:array:number <- new number:type, 20 11:number <- copy 10:address:array:number # allocate another array in its place, implicitly freeing the previous allocation 10:address:array:number <- new number:type, 25 ] +run: {10: ("address" "array" "number")} <- new {number: "type"}, {20: "literal"} # abandoned array is of old size (20, not 25) +abandon: saving in free-list of size 22 //:: abandon and reclaim memory when refcount drops to 0 :(scenario new_reclaim) def main [ 1:address:number <- new number:type 2:number <- copy 1:address:number # because 1 will get reset during abandon below 1:address:number <- copy 0 # abandon 3:address:number <- new number:type # must be same size as abandoned memory to reuse 4:boolean <- equal 2:number, 3:address:number ] # both allocations should have returned the same address +mem: storing 1 in location 4 //: When abandoning addresses we'll save them to a 'free list', segregated by size. :(before "End routine Fields") map free_list; :(code) void abandon(int address, int size) { trace(9999, "abandon") << "saving in free-list of size " << size << end(); //? Total_free += size; //? Num_free++; //? cerr << "abandon: " << size << '\n'; // clear memory for (int curr = address; curr < address+size; ++curr) put(Memory, curr, 0); // append existing free list to address put(Memory, address, get_or_insert(Current_routine->free_list, size)); put(Current_routine->free_list, size, address); } :(before "ensure_space(size)" following "case ALLOCATE") if (get_or_insert(Current_routine->free_list, size)) { trace(9999, "abandon") << "picking up space from free-list of size " << size << end(); int result = get_or_insert(Current_routine->free_list, size); trace(9999, "mem") << "new alloc from free list: " << result << end(); put(Current_routine->free_list, size, get_or_insert(Memory, result)); for (int curr = result+1; curr < result+size; ++curr) { if (get_or_insert(Memory, curr) != 0) { raise << maybe(current_recipe_name()) << "memory in free list was not zeroed out: " << curr << '/' << result << "; somebody wrote to us after free!!!\n" << end(); break; // always fatal } } if (SIZE(current_instruction().ingredients) > 1) put(Memory, result+/*skip refcount*/1, ingredients.at(1).at(0)); else put(Memory, result, 0); products.resize(1); products.at(0).push_back(result); break; } :(scenario new_differing_size_no_reclaim) def main [ 1:address:number <- new number:type 2:number <- copy 1:address:number 1:address:number <- copy 0 # abandon 3:address:array:number <- new number:type, 2 # different size 4:boolean <- equal 2:number, 3:address:array:number ] # no reuse +mem: storing 0 in location 4 :(scenario new_reclaim_array) def main [ 1:address:array:number <- new number:type, 2 2:number <- copy 1:address:array:number 1:address:array:number <- copy 0 # abandon 3:address:array:number <- new number:type, 2 # same size 4:boolean <- equal 2:number, 3:address:array:number ] # reuse +mem: storing 1 in location 4 //:: helpers for debugging :(before "End Primitive Recipe Declarations") _DUMP, :(before "End Primitive Recipe Numbers") put(Recipe_ordinal, "$dump", _DUMP); :(before "End Primitive Recipe Implementations") case _DUMP: { reagent after_canonize = current_instruction().ingredients.at(0); canonize(after_canonize); cerr << maybe(current_recipe_name()) << current_instruction().ingredients.at(0).name << ' ' << no_scientific(current_instruction().ingredients.at(0).value) << " => " << no_scientific(after_canonize.value) << " => " << no_scientific(get_or_insert(Memory, after_canonize.value)) << '\n'; break; } //: grab an address, and then dump its value at intervals //: useful for tracking down memory corruption (writing to an out-of-bounds address) :(before "End Globals") int Bar = -1; :(before "End Primitive Recipe Declarations") _BAR, :(before "End Primitive Recipe Numbers") put(Recipe_ordinal, "$bar", _BAR); :(before "End Primitive Recipe Implementations") case _BAR: { if (current_instruction().ingredients.empty()) { if (Bar != -1) cerr << Bar << ": " << no_scientific(get_or_insert(Memory, Bar)) << '\n'; else cerr << '\n'; } else { reagent tmp = current_instruction().ingredients.at(0); canonize(tmp); Bar = tmp.value; } break; }