//:: Check that the different arguments of an instruction aren't too large for their bitfields. void test_check_bitfield_sizes() { Hide_errors = true; run( "== code 0x1\n" "01/add 4/mod 3/rm32 1/r32\n" // add ECX to EBX ); CHECK_TRACE_CONTENTS( "error: '4/mod' too large to fit in bitfield mod\n" ); } :(before "End Globals") map Operand_bound; :(before "End One-time Setup") put_new(Operand_bound, "subop", 1<<3); put_new(Operand_bound, "mod", 1<<2); put_new(Operand_bound, "rm32", 1<<3); put_new(Operand_bound, "base", 1<<3); put_new(Operand_bound, "index", 1<<3); put_new(Operand_bound, "scale", 1<<2); put_new(Operand_bound, "r32", 1<<3); put_new(Operand_bound, "disp8", 1<<8); put_new(Operand_bound, "disp16", 1<<16); // no bound needed for disp32 put_new(Operand_bound, "imm8", 1<<8); // no bound needed for imm32 :(before "Pack Operands(segment code)") check_argument_bounds(code); if (trace_contains_errors()) return; :(code) void check_argument_bounds(const segment& code) { trace(3, "transform") << "-- check argument bounds" << end(); for (int i = 0; i < SIZE(code.lines); ++i) { const line& inst = code.lines.at(i); for (int j = first_argument(inst); j < SIZE(inst.words); ++j) check_argument_bounds(inst.words.at(j)); if (trace_contains_errors()) return; // stop at the first mal-formed instruction } } void check_argument_bounds(const word& w) { for (map::iterator p = Operand_bound.begin(); p != Operand_bound.end(); ++p) { if (!has_argument_metadata(w, p->first)) continue; if (!looks_like_hex_int(w.data)) continue; // later transforms are on their own to do their own bounds checking int32_t x = parse_int(w.data); if (x >= 0) { if (p->first == "disp8" || p->first == "disp16") { if (static_cast(x) >= p->second/2) raise << "'" << w.original << "' too large to fit in signed bitfield " << p->first << '\n' << end(); } else { if (static_cast(x) >= p->second) raise << "'" << w.original << "' too large to fit in bitfield " << p->first << '\n' << end(); } } else { // hacky? assuming bound is a power of 2 if (x < -1*static_cast(p->second/2)) raise << "'" << w.original << "' too large to fit in bitfield " << p->first << '\n' << end(); } } } void test_check_bitfield_sizes_for_imm8() { run( "== code 0x1\n" "c1/shift 4/subop/left 3/mod/direct 1/rm32/ECX 0xff/imm8" // shift EBX left ); CHECK(!trace_contains_errors()); } void test_check_bitfield_sizes_for_imm8_error() { Hide_errors = true; run( "== code 0x1\n" "c1/shift 4/subop/left 3/mod/direct 1/rm32/ECX 0x100/imm8" // shift EBX left ); CHECK_TRACE_CONTENTS( "error: '0x100/imm8' too large to fit in bitfield imm8\n" ); } void test_check_bitfield_sizes_for_negative_imm8() { run( "== code 0x1\n" "c1/shift 4/subop/left 3/mod/direct 1/rm32/ECX -0x80/imm8" // shift EBX left ); CHECK(!trace_contains_errors()); } void test_check_bitfield_sizes_for_negative_imm8_error() { Hide_errors = true; run( "== code 0x1\n" "c1/shift 4/subop/left 3/mod/direct 1/rm32/ECX -0x81/imm8" // shift EBX left ); CHECK_TRACE_CONTENTS( "error: '-0x81/imm8' too large to fit in bitfield imm8\n" ); } void test_check_bitfield_sizes_for_disp8() { // not bothering to run transform( "== code 0x1\n" "01/add 1/mod/*+disp8 3/rm32 1/r32 0x7f/disp8\n" // add ECX to *(EBX+0x7f) ); CHECK(!trace_contains_errors()); } void test_check_bitfield_sizes_for_disp8_error() { Hide_errors = true; run( "== code 0x1\n" "01/add 1/mod/*+disp8 3/rm32 1/r32 0x80/disp8\n" // add ECX to *(EBX+0x80) ); CHECK_TRACE_CONTENTS( "error: '0x80/disp8' too large to fit in signed bitfield disp8\n" ); } void test_check_bitfield_sizes_for_negative_disp8() { // not bothering to run transform( "== code 0x1\n" "01/add 1/mod/*+disp8 3/rm32 1/r32 -0x80/disp8\n" // add ECX to *(EBX-0x80) ); CHECK(!trace_contains_errors()); } void test_check_bitfield_sizes_for_negative_disp8_error() { Hide_errors = true; run( "== code 0x1\n" "01/add 1/mod/*+disp8 3/rm32 1/r32 -0x81/disp8\n" // add ECX to *(EBX-0x81) ); CHECK_TRACE_CONTENTS( "error: '-0x81/disp8' too large to fit in bitfield disp8\n" ); }