//: Addresses help us spend less time copying data around. //: So far we've been operating on primitives like numbers and characters, and //: we've started combining these primitives together into larger logical //: units (containers or arrays) that may contain many different primitives at //: once. Containers and arrays can grow quite large in complex programs, and //: we'd like some way to efficiently share them between recipes without //: constantly having to make copies. Right now 'next-ingredient' and 'return' //: copy data across recipe boundaries. To avoid copying large quantities of //: data around, we'll use *addresses*. An address is a bookmark to some //: arbitrary quantity of data (the *payload*). It's a primitive, so it's as //: efficient to copy as a number. To read or modify the payload 'pointed to' //: by an address, we'll perform a *lookup*. //: //: The notion of 'lookup' isn't an instruction like 'add' or 'subtract'. //: Instead it's an operation that can be performed when reading any of the //: ingredients of an instruction, and when writing to any of the products. To //: write to the payload of an ingredient rather than its value, simply add //: the /lookup property to it. Modern computers provide efficient support for //: addresses and lookups, making this a realistic feature. //: todo: give 'new' a custodian ingredient. Following malloc/free is a temporary hack. :(scenario new) # call 'new' two times with identical types without modifying the results; you # should get back different results def main [ 1:address:num/raw <- new number:type 2:address:num/raw <- new number:type 3:bool/raw <- equal 1:address:num/raw, 2:address:num/raw ] +mem: storing 0 in location 3 :(scenario new_array) # call 'new' with a second ingredient to allocate an array of some type rather than a single copy def main [ 1:address:array:num/raw <- new number:type, 5 2:address:num/raw <- new number:type 3:num/raw <- subtract 2:address:num/raw, 1:address:array:num/raw ] +run: {1: ("address" "array" "number"), "raw": ()} <- new {number: "type"}, {5: "literal"} +mem: array length is 5 # don't forget the extra location for array length +mem: storing 6 in location 3 :(scenario dilated_reagent_with_new) def main [ 1:address:address:num <- new {(address number): type} ] +new: size of '(address number)' is 1 //: 'new' takes a weird 'type' as its first ingredient; don't error on it :(before "End Mu Types Initialization") put(Type_ordinal, "type", 0); :(code) bool is_mu_type_literal(const reagent& r) { return is_literal(r) && r.type && r.type->name == "type"; } :(before "End Primitive Recipe Declarations") NEW, :(before "End Primitive Recipe Numbers") put(Recipe_ordinal, "new", NEW); :(before "End Primitive Recipe Checks") case NEW: { const recipe& caller = get(Recipe, r); if (inst.ingredients.empty() || SIZE(inst.ingredients) > 2) { raise << maybe(caller.name) << "'new' requires one or two ingredients, but got '" << to_original_string(inst) << "'\n" << end(); break; } // End NEW Check Special-cases const reagent& type = inst.ingredients.at(0); if (!is_mu_type_literal(type)) { raise << maybe(caller.name) << "first ingredient of 'new' should be a type, but got '" << type.original_string << "'\n" << end(); break; } if (SIZE(inst.ingredients) > 1 && !is_mu_number(inst.ingredients.at(1))) { raise << maybe(caller.name) << "second ingredient of 'new' should be a number (array length), but got '" << type.original_string << "'\n" << end(); break; } if (inst.products.empty()) { raise << maybe(caller.name) << "result of 'new' should never be ignored\n" << end(); break; } if (!product_of_new_is_valid(inst)) { raise << maybe(caller.name) << "product of 'new' has incorrect type: '" << to_original_string(inst) << "'\n" << end(); break; } break; } :(code) bool product_of_new_is_valid(const instruction& inst) { reagent/*copy*/ product = inst.products.at(0); // Update NEW product in Check if (!product.type || product.type->atom || product.type->left->value != Address_type_ordinal) return false; drop_from_type(product, "address"); if (SIZE(inst.ingredients) > 1) { // array allocation if (!product.type || product.type->atom || product.type->left->value != Array_type_ordinal) return false; drop_from_type(product, "array"); } reagent/*local*/ expected_product(new_type_tree(inst.ingredients.at(0).name)); return types_strictly_match(product, expected_product); } void drop_from_type(reagent& r, string expected_type) { assert(!r.type->atom); if (r.type->left->name != expected_type) { raise << "can't drop2 " << expected_type << " from '" << to_string(r) << "'\n" << end(); return; } // r.type = r.type->right type_tree* tmp = r.type; r.type = tmp->right; tmp->right = NULL; delete tmp; // if (!r.type->right) r.type = r.type->left assert(!r.type->atom); if (r.type->right) return; tmp = r.type; r.type = tmp->left; tmp->left = NULL; delete tmp; } :(scenario new_returns_incorrect_type) % Hide_errors = true; def main [ 1:bool <- new num:type ] +error: main: product of 'new' has incorrect type: '1:bool <- new num:type' :(scenario new_discerns_singleton_list_from_atom_container) % Hide_errors = true; def main [ 1:address:num/raw <- new {(num): type} # should be '{num: type}' ] +error: main: product of 'new' has incorrect type: '1:address:num/raw <- new {(num): type}' :(scenario new_with_type_abbreviation) def main [ 1:address:num/raw <- new num:type ] $error: 0 :(scenario new_with_type_abbreviation_inside_compound) def main [ {1: (address address number), raw: ()} <- new {(& num): type} ] $error: 0 //: To implement 'new', a Mu transform turns all 'new' instructions into //: 'allocate' instructions that precompute the amount of memory they want to //: allocate. //: Ensure that we never call 'allocate' directly, and that there's no 'new' //: instructions left after the transforms have run. :(before "End Primitive Recipe Checks") case ALLOCATE: { raise << "never call 'allocate' directly'; always use 'new'\n" << end(); break; } :(before "End Primitive Recipe Implementations") case NEW: { raise << "no implementation for 'new'; why wasn't it translated to 'allocate'? Please save a copy of your program and send it to Kartik.\n" << end(); break; } :(after "Transform.push_back(check_instruction)") // check_instruction will guard against direct 'allocate' instructions below Transform.push_back(transform_new_to_allocate); // idempotent :(code) void transform_new_to_allocate(const recipe_ordinal r) { trace(9991, "transform") << "--- convert 'new' to 'allocate' for recipe " << get(Recipe, r).name << end(); for (int i = 0; i < SIZE(get(Recipe, r).steps); ++i) { instruction& inst = get(Recipe, r).steps.at(i); // Convert 'new' To 'allocate' if (inst.name == "new") { if (inst.ingredients.empty()) return; // error raised elsewhere inst.operation = ALLOCATE; type_tree* type = new_type_tree(inst.ingredients.at(0).name); inst.ingredients.at(0).set_value(size_of(type)); trace(9992, "new") << "size of '" << inst.ingredients.at(0).name << "' is " << inst.ingredients.at(0).value << end(); delete type; } } } //: implement 'allocate' based on size :(before "End Globals") extern const int Reserved_for_tests = 1000; int Memory_allocated_until = Reserved_for_tests; int Initial_memory_per_routine = 100000; :(before "End Reset") Memory_allocated_until = Reserved_for_tests; Initial_memory_per_routine = 100000; :(before "End routine Fields") int alloc, alloc_max; :(before "End routine Constructor") alloc = Memory_allocated_until; Memory_allocated_until += Initial_memory_per_routine; alloc_max = Memory_allocated_until; trace("new") << "routine allocated memory from " << alloc << " to " << alloc_max << end(); :(before "End Primitive Recipe Declarations") ALLOCATE, :(before "End Primitive Recipe Numbers") put(Recipe_ordinal, "allocate", ALLOCATE); :(before "End Primitive Recipe Implementations") case ALLOCATE: { // compute the space we need int size = ingredients.at(0).at(0); if (SIZE(ingredients) > 1) { // array allocation trace("mem") << "array length is " << ingredients.at(1).at(0) << end(); size = /*space for length*/1 + size*ingredients.at(1).at(0); } int result = allocate(size); if (SIZE(current_instruction().ingredients) > 1) { // initialize array length trace("mem") << "storing " << ingredients.at(1).at(0) << " in location " << result << end(); put(Memory, result, ingredients.at(1).at(0)); } products.resize(1); products.at(0).push_back(result); break; } :(code) int allocate(int size) { trace("mem") << "allocating size " << size << end(); //? Total_alloc += size; //? ++Num_alloc; // Allocate Special-cases // compute the region of memory to return // really crappy at the moment ensure_space(size); const int result = Current_routine->alloc; trace("mem") << "new alloc: " << result << end(); // initialize allocated space for (int address = result; address < result+size; ++address) { trace("mem") << "storing 0 in location " << address << end(); put(Memory, address, 0); } Current_routine->alloc += size; // no support yet for reclaiming memory between routines assert(Current_routine->alloc <= Current_routine->alloc_max); return result; } //: statistics for debugging //? :(before "End Globals") //? int Total_alloc = 0; //? int Num_alloc = 0; //? int Total_free = 0; //? int Num_free = 0; //? :(before "End Reset") //? if (!Memory.empty()) { //? cerr << Total_alloc << "/" << Num_alloc //? << " vs " << Total_free << "/" << Num_free << '\n'; //? cerr << SIZE(Memory) << '\n'; //? } //? Total_alloc = Num_alloc = Total_free = Num_free = 0; :(code) void ensure_space(int size) { if (size > Initial_memory_per_routine) { cerr << "can't allocate " << size << " locations, that's too much compared to " << Initial_memory_per_routine << ".\n"; exit(1); } if (Current_routine->alloc + size > Current_routine->alloc_max) { // waste the remaining space and create a new chunk Current_routine->alloc = Memory_allocated_until; Memory_allocated_until += Initial_memory_per_routine; Current_routine->alloc_max = Memory_allocated_until; trace("new") << "routine allocated memory from " << Current_routine->alloc << " to " << Current_routine->alloc_max << end(); } } :(scenario new_initializes) % Memory_allocated_until = 10; % put(Memory, Memory_allocated_until, 1); def main [ 1:address:num <- new number:type ] +mem: storing 0 in location 10 :(scenario new_size) def main [ 11:address:num/raw <- new number:type 12:address:num/raw <- new number:type 13:num/raw <- subtract 12:address:num/raw, 11:address:num/raw ] # size of number +mem: storing 1 in location 13 :(scenario new_array_size) def main [ 1:address:array:num/raw <- new number:type, 5 2:address:num/raw <- new number:type 3:num/raw <- subtract 2:address:num/raw, 1:address:array:num/raw ] # 5 locations for array contents + array length +mem: storing 6 in location 3 :(scenario new_empty_array) def main [ 1:address:array:num/raw <- new number:type, 0 2:address:num/raw <- new number:type 3:num/raw <- subtract 2:address:num/raw, 1:address:array:num/raw ] +run: {1: ("address" "array" "number"), "raw": ()} <- new {number: "type"}, {0: "literal"} +mem: array length is 0 # one location for array length +mem: storing 1 in location 3 //: If a routine runs out of its initial allocation, it should allocate more. :(scenario new_overflow) % Initial_memory_per_routine = 2; // barely enough room for point allocation below def main [ 1:address:num/raw <- new number:type 2:address:point/raw <- new point:type # not enough room in initial page ] +new: routine allocated memory from 1000 to 1002 +new: routine allocated memory from 1002 to 1004 :(scenario new_without_ingredient) % Hide_errors = true; def main [ 1:address:number <- new # missing ingredient ] +error: main: 'new' requires one or two ingredients, but got '1:address:number <- new'