//: So far the recipes we define can't run each other. Let's fix that. :(scenario calling_recipe) recipe main [ f ] recipe f [ 3:number <- add 2:literal, 2:literal ] +mem: storing 4 in location 3 :(scenario return_on_fallthrough) recipe main [ f 1:number <- copy 0:literal 2:number <- copy 0:literal 3:number <- copy 0:literal ] recipe f [ 4:number <- copy 0:literal 5:number <- copy 0:literal ] +run: f # running f +run: 4:number <- copy 0:literal +run: 5:number <- copy 0:literal # back out to main +run: 1:number <- copy 0:literal +run: 2:number <- copy 0:literal +run: 3:number <- copy 0:literal :(before "struct routine {") // Everytime a recipe runs another, we interrupt it and start running the new // recipe. When that finishes, we continue this one where we left off. // This requires maintaining a 'stack' of interrupted recipes or 'calls'. struct call { recipe_number running_recipe; long long int running_step_index; // End call Fields call(recipe_number r) { running_recipe = r; running_step_index = 0; // End call Constructor } }; typedef list call_stack; :(replace{} "struct routine") struct routine { call_stack calls; // End routine Fields routine(recipe_number r); bool completed() const; const vector& steps() const; }; :(code) routine::routine(recipe_number r) { calls.push_front(call(r)); // End routine Constructor } //:: now update routine's helpers :(replace{} "inline long long int& current_step_index()") inline long long int& current_step_index() { assert(!Current_routine->calls.empty()); return Current_routine->calls.front().running_step_index; } :(replace{} "inline const string& current_recipe_name()") inline const string& current_recipe_name() { assert(!Current_routine->calls.empty()); return Recipe[Current_routine->calls.front().running_recipe].name; } :(replace{} "inline const instruction& current_instruction()") inline const instruction& current_instruction() { assert(!Current_routine->calls.empty()); return Recipe[Current_routine->calls.front().running_recipe].steps.at(Current_routine->calls.front().running_step_index); } :(replace{} "default:" following "End Primitive Recipe Implementations") default: { // not a primitive; try to look up the book of recipes if (Recipe.find(current_instruction().operation) == Recipe.end()) { raise << "undefined operation " << current_instruction().operation << ": " << current_instruction().to_string() << '\n'; break; } Current_routine->calls.push_front(call(current_instruction().operation)); complete_call: ++Callstack_depth; assert(Callstack_depth < 9000); // 9998-101 plus cushion continue; // not done with caller; don't increment current_step_index() } //:: finally, we need to fix the termination conditions for the run loop :(replace{} "inline bool routine::completed() const") inline bool routine::completed() const { return calls.empty(); } inline const vector& routine::steps() const { assert(!calls.empty()); return Recipe[calls.front().running_recipe].steps; } :(before "Running One Instruction") // when we reach the end of one call, we may reach the end of the one below // it, and the one below that, and so on while (current_step_index() >= SIZE(Current_routine->steps())) { --Callstack_depth; //? cerr << "reply " << Current_routine->calls.size() << '\n'; //? 1 Current_routine->calls.pop_front(); if (Current_routine->calls.empty()) return; // todo: no results returned warning ++current_step_index(); } :(before "End Includes") #include using std::stack;