//: Update refcounts when copying addresses. //: The top of the address layer has more on refcounts. :(scenario refcounts) def main [ 1:address:number <- copy 1000/unsafe 2:address:number <- copy 1:address:number 1:address:number <- copy 0 2:address:number <- copy 0 ] +run: {1: ("address" "number")} <- copy {1000: "literal", "unsafe": ()} +mem: incrementing refcount of 1000: 0 -> 1 +run: {2: ("address" "number")} <- copy {1: ("address" "number")} +mem: incrementing refcount of 1000: 1 -> 2 +run: {1: ("address" "number")} <- copy {0: "literal"} +mem: decrementing refcount of 1000: 2 -> 1 +run: {2: ("address" "number")} <- copy {0: "literal"} +mem: decrementing refcount of 1000: 1 -> 0 :(before "End write_memory(x) Special-cases") if (should_update_refcounts_in_write_memory(product_index)) { if (is_mu_address(x)) { assert(scalar(data)); assert(x.value); assert(!x.metadata.size); update_refcounts(x, data.at(0)); } // End Update Refcounts in write_memory(x) } :(code) //: hook for a later layer bool should_update_refcounts_in_write_memory(int product_index) { return true; } void update_refcounts(const reagent& old, int new_address) { assert(is_mu_address(old)); update_refcounts(get_or_insert(Memory, old.value), new_address, old.type->right, payload_size(old)); } void update_refcounts(int old_address, int new_address, const type_tree* payload_type, int /*just in case it's an array*/payload_size) { if (old_address == new_address) { trace(9999, "mem") << "copying address to itself; refcount unchanged" << end(); return; } // decrement refcount of old address assert(old_address >= 0); if (old_address) { int old_refcount = get_or_insert(Memory, old_address); trace(9999, "mem") << "decrementing refcount of " << old_address << ": " << old_refcount << " -> " << (old_refcount-1) << end(); --old_refcount; put(Memory, old_address, old_refcount); if (old_refcount < 0) { tb_shutdown(); DUMP(""); cerr << "Negative refcount: " << old_address << ' ' << old_refcount << '\n'; exit(0); } // End Decrement Reference Count(old_address, payload_type, payload_size) } // increment refcount of new address if (new_address) { int new_refcount = get_or_insert(Memory, new_address); assert(new_refcount >= 0); // == 0 only when new_address == old_address trace(9999, "mem") << "incrementing refcount of " << new_address << ": " << new_refcount << " -> " << (new_refcount+1) << end(); put(Memory, new_address, new_refcount+1); } } int payload_size(reagent/*copy*/ x) { x.properties.push_back(pair("lookup", NULL)); lookup_memory_core(x); return size_of(x)+/*refcount*/1; } :(scenario refcounts_reflexive) def main [ 1:address:number <- new number:type # idempotent copies leave refcount unchanged 1:address:number <- copy 1:address:number ] +run: {1: ("address" "number")} <- new {number: "type"} +mem: incrementing refcount of 1000: 0 -> 1 +run: {1: ("address" "number")} <- copy {1: ("address" "number")} +mem: copying address to itself; refcount unchanged :(scenario refcounts_call) def main [ 1:address:number <- new number:type # passing in addresses to recipes increments refcount foo 1:address:number # return does NOT yet decrement refcount; memory must be explicitly managed 1:address:number <- new number:type ] def foo [ 2:address:number <- next-ingredient ] +run: {1: ("address" "number")} <- new {number: "type"} +mem: incrementing refcount of 1000: 0 -> 1 +run: {2: ("address" "number")} <- next-ingredient +mem: incrementing refcount of 1000: 1 -> 2 +run: {1: ("address" "number")} <- new {number: "type"} +mem: decrementing refcount of 1000: 2 -> 1 //: fix up any instructions that don't follow the usual flow of read_memory //: before the RUN switch, and write_memory after :(scenario refcounts_put) container foo [ x:address:number ] def main [ 1:address:number <- new number:type 2:address:foo <- new foo:type *2:address:foo <- put *2:address:foo, x:offset, 1:address:number ] +run: {1: ("address" "number")} <- new {number: "type"} +mem: incrementing refcount of 1000: 0 -> 1 +run: {2: ("address" "foo")} <- new {foo: "type"} +mem: incrementing refcount of 1002: 0 -> 1 +run: {2: ("address" "foo"), "lookup": ()} <- put {2: ("address" "foo"), "lookup": ()}, {x: "offset"}, {1: ("address" "number")} # put increments refcount +mem: incrementing refcount of 1000: 1 -> 2 :(after "Write Memory in PUT in Run") reagent/*copy*/ element = element_type(base.type, offset); assert(!has_property(element, "lookup")); element.value = address; if (is_mu_address(element)) update_refcounts(element, ingredients.at(2).at(0)); // End Update Refcounts in PUT :(scenario refcounts_put_index) def main [ 1:address:number <- new number:type 2:address:array:address:number <- new {(address number): type}, 3 *2:address:array:address:number <- put-index *2:address:array:address:number, 0, 1:address:number ] +run: {1: ("address" "number")} <- new {number: "type"} +mem: incrementing refcount of 1000: 0 -> 1 +run: {2: ("address" "array" "address" "number")} <- new {(address number): "type"}, {3: "literal"} +mem: incrementing refcount of 1002: 0 -> 1 +run: {2: ("address" "array" "address" "number"), "lookup": ()} <- put-index {2: ("address" "array" "address" "number"), "lookup": ()}, {0: "literal"}, {1: ("address" "number")} # put-index increments refcount +mem: incrementing refcount of 1000: 1 -> 2 :(after "Write Memory in PUT_INDEX in Run") if (is_mu_address(element)) update_refcounts(element, value.at(0)); // End Update Refcounts in PUT_INDEX :(scenario refcounts_maybe_convert) exclusive-container foo [ x:number p:address:number ] def main [ 1:address:number <- new number:type 2:foo <- merge 1/p, 1:address:number 4:address:number, 5:boolean <- maybe-convert 2:foo, 1:variant/p ] +run: {1: ("address" "number")} <- new {number: "type"} +mem: incrementing refcount of 1000: 0 -> 1 # merging in an address increments refcount +run: {2: "foo"} <- merge {1: "literal", "p": ()}, {1: ("address" "number")} +mem: incrementing refcount of 1000: 1 -> 2 +run: {4: ("address" "number")}, {5: "boolean"} <- maybe-convert {2: "foo"}, {1: "variant", "p": ()} # maybe-convert increments refcount on success +mem: incrementing refcount of 1000: 2 -> 3 :(after "Write Memory in Successful MAYBE_CONVERT") if (is_mu_address(product)) update_refcounts(product, get_or_insert(Memory, base_address+/*skip tag*/1)); // End Update Refcounts in Successful MAYBE_CONVERT //:: manage refcounts in instructions that copy multiple locations at a time :(scenario refcounts_copy_nested) container foo [ x:address:number # address inside container ] def main [ 1:address:number <- new number:type 2:address:foo <- new foo:type *2:address:foo <- put *2:address:foo, x:offset, 1:address:number 3:foo <- copy *2:address:foo ] +transform: compute address offsets for container foo +transform: checking container foo, element 0 +transform: address at offset 0 +run: {1: ("address" "number")} <- new {number: "type"} +mem: incrementing refcount of 1000: 0 -> 1 +run: {2: ("address" "foo"), "lookup": ()} <- put {2: ("address" "foo"), "lookup": ()}, {x: "offset"}, {1: ("address" "number")} +mem: incrementing refcount of 1000: 1 -> 2 # copying a container increments refcounts of any contained addresses +run: {3: "foo"} <- copy {2: ("address" "foo"), "lookup": ()} +mem: incrementing refcount of 1000: 2 -> 3 :(after "End type_tree Definition") struct address_element_info { int offset; // where inside a container type (after flattening nested containers!) the address lies const type_tree* payload_type; // all the information we need to compute sizes of items inside an address inside a container. Doesn't need to be a full-scale reagent, since an address inside a container can never be an array, and arrays are the only type that need to know their location to compute their size. address_element_info(int o, const type_tree* p) { offset = o; payload_type = p; } address_element_info(const address_element_info& other) { offset = other.offset; payload_type = other.payload_type ? new type_tree(*other.payload_type) : NULL; } ~address_element_info() { if (payload_type) { delete payload_type; payload_type = NULL; } } address_element_info& operator=(const address_element_info& other) { offset = other.offset; if (payload_type) delete payload_type; payload_type = other.payload_type ? new type_tree(*other.payload_type) : NULL; return *this; } }; :(before "struct container_metadata ") // valid fields for containers: size, offset, address, maybe_address (if container directly or indirectly contains exclusive containers with addresses) // valid fields for exclusive containers: size, maybe_address :(before "End container_metadata Fields") vector address; // list of offsets containing addresses, and the sizes of their corresponding payloads map, vector > maybe_address; //: populate metadata.address in a separate transform, because it requires //: already knowing the sizes of all types :(after "Transform.push_back(compute_container_sizes)") Transform.push_back(compute_container_address_offsets); :(code) void compute_container_address_offsets(const recipe_ordinal r) { recipe& caller = get(Recipe, r); trace(9992, "transform") << "--- compute address offsets for " << caller.name << end(); for (int i = 0; i < SIZE(caller.steps); ++i) { instruction& inst = caller.steps.at(i); trace(9993, "transform") << "- compute address offsets for " << to_string(inst) << end(); for (int i = 0; i < SIZE(inst.ingredients); ++i) compute_container_address_offsets(inst.ingredients.at(i)); for (int i = 0; i < SIZE(inst.products); ++i) compute_container_address_offsets(inst.products.at(i)); } } void compute_container_address_offsets(reagent& r) { if (is_literal(r) || is_dummy(r)) return; compute_container_address_offsets(r.type); if (contains_key(Container_metadata, r.type)) r.metadata = get(Container_metadata, r.type); } void compute_container_address_offsets(type_tree* type) { if (!type) return; if (type->left) compute_container_address_offsets(type->left); if (type->right) compute_container_address_offsets(type->right); if (!contains_key(Type, type->value)) return; // error raised elsewhere type_info& info = get(Type, type->value); if (info.kind == CONTAINER) { container_metadata& metadata = get(Container_metadata, type); if (!metadata.address.empty()) return; trace(9994, "transform") << "compute address offsets for container " << info.name << end(); if (!append_addresses(0, type, metadata.address, metadata)) return; // error } if (info.kind == EXCLUSIVE_CONTAINER) { container_metadata& metadata = get(Container_metadata, type); if (!metadata.maybe_address.empty()) return; trace(9994, "transform") << "compute address offsets for exclusive container " << info.name << end(); for (int tag = 0; tag < SIZE(info.elements); ++tag) { if (!append_addresses(/*skip tag offset*/1, variant_type(type, tag).type, get_or_insert(metadata.maybe_address, pair(/*tag offset*/0, tag)), metadata)) return; // error } } } // returns false on error (raised elsewhere) //: error status is used in later layers bool append_addresses(int base_offset, const type_tree* type, vector& out, container_metadata& out_metadata) { const type_info& info = get(Type, type->value); if (type->name == "address") { assert(type->right && type->right->name != "array"); // array types can't be handled without a full reagent and its value out.push_back(address_element_info(base_offset, new type_tree(*type->right))); return true; } if (info.kind == PRIMITIVE) return true; for (int curr_index = 0, curr_offset = base_offset; curr_index < SIZE(info.elements); ++curr_index) { trace(9993, "transform") << "checking container " << type->name << ", element " << curr_index << end(); reagent/*copy*/ element = element_type(type, curr_index); // Compute Container Address Offset(element) if (is_mu_address(element)) { trace(9993, "transform") << "address at offset " << curr_offset << end(); out.push_back(address_element_info(curr_offset, new type_tree(*element.type->right))); ++curr_offset; } else if (is_mu_container(element)) { if (!append_addresses(curr_offset, element.type, out, out_metadata)) return false; // error curr_offset += size_of(element); } else if (is_mu_exclusive_container(element)) { const type_info& element_info = get(Type, element.type->value); for (int tag = 0; tag < SIZE(element_info.elements); ++tag) { vector& tmp = get_or_insert(out_metadata.maybe_address, pair(curr_offset, tag)); if (tmp.empty()) { if (!append_addresses(curr_offset+1, variant_type(element.type, tag).type, tmp, out_metadata)) return false; // error } } curr_offset += size_of(element); } else { // non-address primitive ++curr_offset; } } return true; } int payload_size(const type_tree* type) { assert(type->name == "address"); return size_of(type->right)+/*refcount*/1; } //: use metadata.address to update refcounts within containers, arrays and //: exclusive containers :(before "End Update Refcounts in write_memory(x)") if (is_mu_container(x) || is_mu_exclusive_container(x)) update_container_refcounts(x, data); :(before "End Update Refcounts in PUT") if (is_mu_container(element) || is_mu_exclusive_container(element)) update_container_refcounts(element, ingredients.at(2)); :(before "End Update Refcounts in PUT_INDEX") if (is_mu_container(element) || is_mu_exclusive_container(element)) update_container_refcounts(element, value); :(before "End Update Refcounts in Successful MAYBE_CONVERT") if (is_mu_container(product) || is_mu_exclusive_container(product)) { vector data; for (int i = 0; i < size_of(product); ++i) data.push_back(get_or_insert(Memory, base_address+/*skip tag*/1+i)); update_container_refcounts(product, data); } :(code) void update_container_refcounts(const reagent& x, const vector& data) { assert(is_mu_container(x) || is_mu_exclusive_container(x)); const container_metadata& metadata = get(Container_metadata, x.type); for (int i = 0; i < SIZE(metadata.address); ++i) { const address_element_info& info = metadata.address.at(i); update_refcounts(get_or_insert(Memory, x.value + info.offset), data.at(info.offset), info.payload_type, size_of(info.payload_type)+/*refcount*/1); } for (map, vector >::const_iterator p = metadata.maybe_address.begin(); p != metadata.maybe_address.end(); ++p) { if (data.at(p->first.first) != p->first.second) continue; for (int i = 0; i < SIZE(p->second); ++i) { const address_element_info& info = p->second.at(i); update_refcounts(get_or_insert(Memory, x.value + info.offset), data.at(info.offset), info.payload_type, size_of(info.payload_type)+/*refcount*/1); } } } :(scenario refcounts_put_container) container foo [ a:bar # contains an address ] container bar [ x:address:number ] def main [ 1:address:number <- new number:type 2:bar <- merge 1:address:number 3:address:foo <- new foo:type *3:address:foo <- put *3:address:foo, a:offset, 2:bar ] +run: {1: ("address" "number")} <- new {number: "type"} +mem: incrementing refcount of 1000: 0 -> 1 +run: {2: "bar"} <- merge {1: ("address" "number")} +mem: incrementing refcount of 1000: 1 -> 2 +run: {3: ("address" "foo"), "lookup": ()} <- put {3: ("address" "foo"), "lookup": ()}, {a: "offset"}, {2: "bar"} # put increments refcount inside container +mem: incrementing refcount of 1000: 2 -> 3 :(scenario refcounts_put_index_container) container bar [ x:address:number ] def main [ 1:address:number <- new number:type 2:bar <- merge 1:address:number 3:address:array:bar <- new bar:type, 3 *3:address:array:bar <- put-index *3:address:array:bar, 0, 2:bar ] +run: {1: ("address" "number")} <- new {number: "type"} +mem: incrementing refcount of 1000: 0 -> 1 +run: {2: "bar"} <- merge {1: ("address" "number")} +mem: incrementing refcount of 1000: 1 -> 2 +run: {3: ("address" "array" "bar"), "lookup": ()} <- put-index {3: ("address" "array" "bar"), "lookup": ()}, {0: "literal"}, {2: "bar"} # put-index increments refcount inside container +mem: incrementing refcount of 1000: 2 -> 3 :(scenario refcounts_maybe_convert_container) exclusive-container foo [ a:number b:bar # contains an address ] container bar [ x:address:number ] def main [ 1:address:number <- new number:type 2:bar <- merge 1:address:number 3:foo <- merge 1/b, 2:bar 5:bar, 6:boolean <- maybe-convert 3:foo, 1:variant/b ] +run: {1: ("address" "number")} <- new {number: "type"} +mem: incrementing refcount of 1000: 0 -> 1 +run: {2: "bar"} <- merge {1: ("address" "number")} +mem: incrementing refcount of 1000: 1 -> 2 +run: {3: "foo"} <- merge {1: "literal", "b": ()}, {2: "bar"} +mem: incrementing refcount of 1000: 2 -> 3 +run: {5: "bar"}, {6: "boolean"} <- maybe-convert {3: "foo"}, {1: "variant", "b": ()} +mem: incrementing refcount of 1000: 3 -> 4 :(scenario refcounts_copy_doubly_nested) container foo [ a:bar # no addresses b:curr # contains addresses ] container bar [ x:number y:number ] container curr [ x:number y:address:number # address inside container inside container ] def main [ 1:address:number <- new number:type 2:address:curr <- new curr:type *2:address:curr <- put *2:address:curr, 1:offset/y, 1:address:number 3:address:foo <- new foo:type *3:address:foo <- put *3:address:foo, 1:offset/b, *2:address:curr 4:foo <- copy *3:address:foo ] +transform: compute address offsets for container foo +transform: checking container foo, element 1 +transform: address at offset 3 +run: {1: ("address" "number")} <- new {number: "type"} +mem: incrementing refcount of 1000: 0 -> 1 # storing an address in a container updates its refcount +run: {2: ("address" "curr"), "lookup": ()} <- put {2: ("address" "curr"), "lookup": ()}, {1: "offset", "y": ()}, {1: ("address" "number")} +mem: incrementing refcount of 1000: 1 -> 2 # storing a container in a container updates refcounts of any contained addresses +run: {3: ("address" "foo"), "lookup": ()} <- put {3: ("address" "foo"), "lookup": ()}, {1: "offset", "b": ()}, {2: ("address" "curr"), "lookup": ()} +mem: incrementing refcount of 1000: 2 -> 3 # copying a container containing a container containing an address updates refcount +run: {4: "foo"} <- copy {3: ("address" "foo"), "lookup": ()} +mem: incrementing refcount of 1000: 3 -> 4 :(scenario refcounts_copy_exclusive_container_within_container) container foo [ a:number b:bar ] exclusive-container bar [ x:number y:number z:address:number ] def main [ 1:address:number <- new number:type 2:bar <- merge 0/x, 34 3:foo <- merge 12, 2:bar 5:bar <- merge 1/y, 35 6:foo <- merge 13, 5:bar 8:bar <- merge 2/z, 1:address:number 9:foo <- merge 14, 8:bar 11:foo <- copy 9:foo ] +run: {1: ("address" "number")} <- new {number: "type"} +mem: incrementing refcount of 1000: 0 -> 1 # no change while merging items of other types +run: {8: "bar"} <- merge {2: "literal", "z": ()}, {1: ("address" "number")} +mem: incrementing refcount of 1000: 1 -> 2 +run: {9: "foo"} <- merge {14: "literal"}, {8: "bar"} +mem: incrementing refcount of 1000: 2 -> 3 +run: {11: "foo"} <- copy {9: "foo"} +mem: incrementing refcount of 1000: 3 -> 4 :(scenario refcounts_copy_container_within_exclusive_container) exclusive-container foo [ a:number b:bar ] container bar [ x:number y:number z:address:number ] def main [ 1:address:number <- new number:type 2:foo <- merge 0/a, 34 6:foo <- merge 0/a, 35 10:bar <- merge 2/x, 15/y, 1:address:number 13:foo <- merge 1/b, 10:bar 17:foo <- copy 13:foo ] +run: {1: ("address" "number")} <- new {number: "type"} +mem: incrementing refcount of 1000: 0 -> 1 # no change while merging items of other types +run: {10: "bar"} <- merge {2: "literal", "x": ()}, {15: "literal", "y": ()}, {1: ("address" "number")} +mem: incrementing refcount of 1000: 1 -> 2 +run: {13: "foo"} <- merge {1: "literal", "b": ()}, {10: "bar"} +mem: incrementing refcount of 1000: 2 -> 3 +run: {17: "foo"} <- copy {13: "foo"} +mem: incrementing refcount of 1000: 3 -> 4 :(code) bool is_mu_container(const reagent& r) { return is_mu_container(r.type); } bool is_mu_container(const type_tree* type) { if (type->value == 0) return false; type_info& info = get(Type, type->value); return info.kind == CONTAINER; } bool is_mu_exclusive_container(const reagent& r) { return is_mu_exclusive_container(r.type); } bool is_mu_exclusive_container(const type_tree* type) { if (type->value == 0) return false; type_info& info = get(Type, type->value); return info.kind == EXCLUSIVE_CONTAINER; }