//: Creating space for new variables at runtime. //: Mu has two primitives for managing allocations: //: - 'allocate' reserves a specified amount of space //: - 'abandon' returns allocated space to be reused by future calls to 'allocate' //: //: In practice it's useful to let programs copy addresses anywhere they want, //: but a prime source of (particularly security) bugs is accessing memory //: after it's been abandoned. To avoid this, mu programs use a safer //: primitive called 'new', which adds two features: //: //: - it takes a type rather than a size, to save you the trouble of //: calculating sizes of different variables. //: - it allocates an extra location where it tracks so-called 'reference //: counts' or refcounts: the number of address variables in your program that //: point to this allocation. The initial refcount of an allocation starts out //: at 1 (the product of the 'new' instruction). When other variables are //: copied from it the refcount is incremented. When a variable stops pointing //: at it the refcount is decremented. When the refcount goes to 0 the //: allocation is automatically abandoned. //: //: Mu programs guarantee you'll have no memory corruption bugs as long as you //: use 'new' and never use 'allocate' or 'abandon'. However, they don't help //: you at all to remember to abandon memory after you're done with it. To //: minimize memory use, be sure to reset allocated addresses to 0 when you're //: done with them. //: interlude { //: To help you distinguish addresses that point at allocations, 'new' returns //: type address:shared:___. Think of 'shared' as a generic container that //: contains one extra field: the refcount. However, lookup operations will //: transparently drop the 'shared' and access to the refcount. Copying //: between shared and non-shared addresses is forbidden. :(before "End Mu Types Initialization") type_ordinal shared = put(Type_ordinal, "shared", Next_type_ordinal++); get_or_insert(Type, shared).name = "shared"; :(before "End Drop Address In lookup_memory(x)") if (x.type->name == "shared" && x.value != 0) { trace(9999, "mem") << "skipping refcount at " << x.value << end(); x.set_value(x.value+1); // skip refcount drop_from_type(x, "shared"); } :(before "End Drop Address In canonize_type(r)") if (r.type->name == "shared") { drop_from_type(r, "shared"); } :(code) void test_lookup_shared_address() { reagent x("*x:address:shared:number"); x.set_value(34); // unsafe put(Memory, 34, 1000); lookup_memory(x); CHECK_TRACE_CONTENTS("mem: skipping refcount at 1000"); CHECK_EQ(x.value, 1001); } void test_lookup_shared_address_skip_zero() { reagent x("*x:address:shared:number"); x.set_value(34); // unsafe put(Memory, 34, 0); lookup_memory(x); CHECK_TRACE_DOESNT_CONTAIN("mem: skipping refcount at 0"); CHECK_EQ(x.value, 0); } //: } end interlude :(scenarios run) :(scenario new) # call new two times with identical arguments; you should get back different results def main [ 1:address:shared:number/raw <- new number:type 2:address:shared:number/raw <- new number:type 3:boolean/raw <- equal 1:address:shared:number/raw, 2:address:shared:number/raw ] +mem: storing 0 in location 3 :(before "End Globals") const int Reserved_for_tests = 1000; int Memory_allocated_until = Reserved_for_tests; int Initial_memory_per_routine = 100000; :(before "End Setup") Memory_allocated_until = Reserved_for_tests; Initial_memory_per_routine = 100000; :(before "End routine Fields") int alloc, alloc_max; :(before "End routine Constructor") alloc = Memory_allocated_until; Memory_allocated_until += Initial_memory_per_routine; alloc_max = Memory_allocated_until; trace(9999, "new") << "routine allocated memory from " << alloc << " to " << alloc_max << end(); //:: 'new' takes a weird 'type' as its first ingredient; don't error on it :(before "End Mu Types Initialization") put(Type_ordinal, "type", 0); //:: typecheck 'new' instructions :(before "End Primitive Recipe Declarations") NEW, :(before "End Primitive Recipe Numbers") put(Recipe_ordinal, "new", NEW); :(before "End Primitive Recipe Checks") case NEW: { const recipe& caller = get(Recipe, r); if (inst.ingredients.empty() || SIZE(inst.ingredients) > 2) { raise << maybe(caller.name) << "'new' requires one or two ingredients, but got " << to_original_string(inst) << '\n' << end(); break; } // End NEW Check Special-cases reagent type = inst.ingredients.at(0); if (!is_mu_type_literal(type)) { raise << maybe(caller.name) << "first ingredient of 'new' should be a type, but got " << type.original_string << '\n' << end(); break; } if (inst.products.empty()) { raise << maybe(caller.name) << "result of 'new' should never be ignored\n" << end(); break; } if (!product_of_new_is_valid(inst)) { raise << maybe(caller.name) << "product of 'new' has incorrect type: " << to_original_string(inst) << '\n' << end(); break; } break; } :(code) bool product_of_new_is_valid(const instruction& inst) { reagent product = inst.products.at(0); canonize_type(product); if (!product.type || product.type->value != get(Type_ordinal, "address")) return false; drop_from_type(product, "address"); if (!product.type || product.type->value != get(Type_ordinal, "shared")) return false; drop_from_type(product, "shared"); if (SIZE(inst.ingredients) > 1) { // array allocation if (!product.type || product.type->value != get(Type_ordinal, "array")) return false; drop_from_type(product, "array"); } reagent expected_product("x:"+inst.ingredients.at(0).name); // End Post-processing(expected_product) When Checking 'new' return types_strictly_match(product, expected_product); } //:: translate 'new' to 'allocate' instructions that take a size instead of a type :(after "Transform.push_back(check_instruction)") // check_instruction will guard against direct 'allocate' instructions below Transform.push_back(transform_new_to_allocate); // idempotent :(code) void transform_new_to_allocate(const recipe_ordinal r) { trace(9991, "transform") << "--- convert 'new' to 'allocate' for recipe " << get(Recipe, r).name << end(); for (int i = 0; i < SIZE(get(Recipe, r).steps); ++i) { instruction& inst = get(Recipe, r).steps.at(i); // Convert 'new' To 'allocate' if (inst.name == "new") { inst.operation = ALLOCATE; string_tree* type_name = new string_tree(inst.ingredients.at(0).name); // End Post-processing(type_name) When Converting 'new' type_tree* type = new_type_tree(type_name); inst.ingredients.at(0).set_value(size_of(type)); trace(9992, "new") << "size of " << to_string(type_name) << " is " << inst.ingredients.at(0).value << end(); delete type; delete type_name; } } } //:: implement 'allocate' based on size :(before "End Primitive Recipe Declarations") ALLOCATE, :(before "End Primitive Recipe Numbers") put(Recipe_ordinal, "allocate", ALLOCATE); :(before "End Primitive Recipe Implementations") case ALLOCATE: { // compute the space we need int size = ingredients.at(0).at(0); if (SIZE(ingredients) > 1) { // array trace(9999, "mem") << "array size is " << ingredients.at(1).at(0) << end(); size = /*space for length*/1 + size*ingredients.at(1).at(0); } // include space for refcount size++; trace(9999, "mem") << "allocating size " << size << end(); //? Total_alloc += size; //? Num_alloc++; // compute the region of memory to return // really crappy at the moment ensure_space(size); const int result = Current_routine->alloc; trace(9999, "mem") << "new alloc: " << result << end(); // save result products.resize(1); products.at(0).push_back(result); // initialize allocated space for (int address = result; address < result+size; ++address) put(Memory, address, 0); // initialize array length if (SIZE(current_instruction().ingredients) > 1) { trace(9999, "mem") << "storing " << ingredients.at(1).at(0) << " in location " << result+/*skip refcount*/1 << end(); put(Memory, result+/*skip refcount*/1, ingredients.at(1).at(0)); } // bump Current_routine->alloc += size; // no support for reclaiming memory assert(Current_routine->alloc <= Current_routine->alloc_max); break; } //:: ensure we never call 'allocate' directly; its types are not checked :(before "End Primitive Recipe Checks") case ALLOCATE: { raise << "never call 'allocate' directly'; always use 'new'\n" << end(); break; } //:: ensure we never call 'new' without translating it (unless we add special-cases later) :(before "End Primitive Recipe Implementations") case NEW: { raise << "no implementation for 'new'; why wasn't it translated to 'allocate'? Please save a copy of your program and send it to Kartik.\n" << end(); break; } //? :(before "End Globals") //? int Total_alloc = 0; //? int Num_alloc = 0; //? int Total_free = 0; //? int Num_free = 0; //? :(before "End Setup") //? Total_alloc = Num_alloc = Total_free = Num_free = 0; //? :(before "End Teardown") //? cerr << Total_alloc << "/" << Num_alloc //? << " vs " << Total_free << "/" << Num_free << '\n'; //? cerr << SIZE(Memory) << '\n'; :(code) void ensure_space(int size) { if (size > Initial_memory_per_routine) { tb_shutdown(); cerr << "can't allocate " << size << " locations, that's too much compared to " << Initial_memory_per_routine << ".\n"; exit(0); } if (Current_routine->alloc + size > Current_routine->alloc_max) { // waste the remaining space and create a new chunk Current_routine->alloc = Memory_allocated_until; Memory_allocated_until += Initial_memory_per_routine; Current_routine->alloc_max = Memory_allocated_until; trace(9999, "new") << "routine allocated memory from " << Current_routine->alloc << " to " << Current_routine->alloc_max << end(); } } :(scenario new_initializes) % Memory_allocated_until = 10; % put(Memory, Memory_allocated_until, 1); def main [ 1:address:shared:number <- new number:type 2:number <- copy *1:address:shared:number ] +mem: storing 0 in location 2 :(scenario new_error) % Hide_errors = true; def main [ 1:address:number/raw <- new number:type ] +error: main: product of 'new' has incorrect type: 1:address:number/raw <- new number:type :(scenario new_array) def main [ 1:address:shared:array:number/raw <- new number:type, 5 2:address:shared:number/raw <- new number:type 3:number/raw <- subtract 2:address:shared:number/raw, 1:address:shared:array:number/raw ] +run: {1: ("address" "shared" "array" "number"), "raw": ()} <- new {number: "type"}, {5: "literal"} +mem: array size is 5 # don't forget the extra location for array size, and the second extra location for the refcount +mem: storing 7 in location 3 :(scenario new_empty_array) def main [ 1:address:shared:array:number/raw <- new number:type, 0 2:address:shared:number/raw <- new number:type 3:number/raw <- subtract 2:address:shared:number/raw, 1:address:shared:array:number/raw ] +run: {1: ("address" "shared" "array" "number"), "raw": ()} <- new {number: "type"}, {0: "literal"} +mem: array size is 0 # one location for array size, and one for the refcount +mem: storing 2 in location 3 //: If a routine runs out of its initial allocation, it should allocate more. :(scenario new_overflow) % Initial_memory_per_routine = 3; // barely enough room for point allocation below def main [ 1:address:shared:number/raw <- new number:type 2:address:shared:point/raw <- new point:type # not enough room in initial page ] +new: routine allocated memory from 1000 to 1003 +new: routine allocated memory from 1003 to 1006 //:: A way to return memory, and to reuse reclaimed memory. //: todo: custodians, etc. Following malloc/free is a temporary hack. :(scenario new_reclaim) def main [ 1:address:shared:number <- new number:type 2:address:shared:number <- copy 1:address:shared:number # because 1 will get reset during abandon below abandon 1:address:shared:number # unsafe 3:address:shared:number <- new number:type # must be same size as abandoned memory to reuse 4:boolean <- equal 2:address:shared:number, 3:address:shared:number ] # both allocations should have returned the same address +mem: storing 1 in location 4 :(before "End routine Fields") map free_list; :(before "End Primitive Recipe Declarations") ABANDON, :(before "End Primitive Recipe Numbers") put(Recipe_ordinal, "abandon", ABANDON); :(before "End Primitive Recipe Checks") case ABANDON: { if (SIZE(inst.ingredients) != 1) { raise << maybe(get(Recipe, r).name) << "'abandon' requires one ingredient, but got '" << to_original_string(inst) << "'\n" << end(); break; } reagent types = inst.ingredients.at(0); canonize_type(types); if (!types.type || types.type->value != get(Type_ordinal, "address") || types.type->right->value != get(Type_ordinal, "shared")) { raise << maybe(get(Recipe, r).name) << "first ingredient of 'abandon' should be an address:shared:___, but got " << inst.ingredients.at(0).original_string << '\n' << end(); break; } break; } :(before "End Primitive Recipe Implementations") case ABANDON: { int address = ingredients.at(0).at(0); trace(9999, "abandon") << "address to abandon is " << address << end(); reagent types = current_instruction().ingredients.at(0); trace(9999, "abandon") << "value of ingredient is " << types.value << end(); canonize(types); // lookup_memory without drop_one_lookup { trace(9999, "abandon") << "value of ingredient after canonization is " << types.value << end(); int address_location = types.value; types.set_value(get_or_insert(Memory, types.value)+/*skip refcount*/1); drop_from_type(types, "address"); drop_from_type(types, "shared"); // } abandon(address, size_of(types)+/*refcount*/1); // clear the address trace(9999, "mem") << "resetting location " << address_location << end(); put(Memory, address_location, 0); break; } :(code) void abandon(int address, int size) { trace(9999, "abandon") << "saving in free-list of size " << size << end(); //? Total_free += size; //? Num_free++; //? cerr << "abandon: " << size << '\n'; // clear memory for (int curr = address; curr < address+size; ++curr) put(Memory, curr, 0); // append existing free list to address put(Memory, address, get_or_insert(Current_routine->free_list, size)); put(Current_routine->free_list, size, address); } :(before "ensure_space(size)" following "case ALLOCATE") if (get_or_insert(Current_routine->free_list, size)) { trace(9999, "abandon") << "picking up space from free-list of size " << size << end(); int result = get_or_insert(Current_routine->free_list, size); trace(9999, "mem") << "new alloc from free list: " << result << end(); put(Current_routine->free_list, size, get_or_insert(Memory, result)); for (int curr = result+1; curr < result+size; ++curr) { if (get_or_insert(Memory, curr) != 0) { raise << maybe(current_recipe_name()) << "memory in free list was not zeroed out: " << curr << '/' << result << "; somebody wrote to us after free!!!\n" << end(); break; // always fatal } } if (SIZE(current_instruction().ingredients) > 1) put(Memory, result+/*skip refcount*/1, ingredients.at(1).at(0)); else put(Memory, result, 0); products.resize(1); products.at(0).push_back(result); break; } :(scenario new_differing_size_no_reclaim) def main [ 1:address:shared:number <- new number:type 2:address:shared:number <- copy 1:address:shared:number abandon 1:address:shared:number 3:address:shared:array:number <- new number:type, 2 # different size 4:boolean <- equal 2:address:shared:number, 3:address:shared:array:number ] # no reuse +mem: storing 0 in location 4 :(scenario new_reclaim_array) def main [ 1:address:shared:array:number <- new number:type, 2 2:address:shared:array:number <- copy 1:address:shared:array:number abandon 1:address:shared:array:number # unsafe 3:address:shared:array:number <- new number:type, 2 4:boolean <- equal 2:address:shared:array:number, 3:address:shared:array:number ] # reuse +mem: storing 1 in location 4 :(scenario reset_on_abandon) def main [ 1:address:shared:number <- new number:type abandon 1:address:shared:number ] # reuse +run: abandon {1: ("address" "shared" "number")} +mem: resetting location 1 //:: Manage refcounts when copying addresses. :(scenario refcounts) def main [ 1:address:shared:number <- copy 1000/unsafe 2:address:shared:number <- copy 1:address:shared:number 1:address:shared:number <- copy 0 2:address:shared:number <- copy 0 ] +run: {1: ("address" "shared" "number")} <- copy {1000: "literal", "unsafe": ()} +mem: incrementing refcount of 1000: 0 -> 1 +run: {2: ("address" "shared" "number")} <- copy {1: ("address" "shared" "number")} +mem: incrementing refcount of 1000: 1 -> 2 +run: {1: ("address" "shared" "number")} <- copy {0: "literal"} +mem: decrementing refcount of 1000: 2 -> 1 +run: {2: ("address" "shared" "number")} <- copy {0: "literal"} +mem: decrementing refcount of 1000: 1 -> 0 # the /unsafe corrupts memory but fortunately we won't be running any more 'new' in this scenario +mem: automatically abandoning 1000 :(before "End write_memory(reagent x) Special-cases") if (x.type->value == get(Type_ordinal, "address") && x.type->right && x.type->right->value == get(Type_ordinal, "shared")) { // compute old address of x, as well as new address we want to write in int old_address = get_or_insert(Memory, x.value); assert(scalar(data)); int new_address = data.at(0); // decrement refcount of old address if (old_address) { int old_refcount = get_or_insert(Memory, old_address); trace(9999, "mem") << "decrementing refcount of " << old_address << ": " << old_refcount << " -> " << (old_refcount-1) << end(); put(Memory, old_address, old_refcount-1); } // perform the write trace(9999, "mem") << "storing " << no_scientific(data.at(0)) << " in location " << x.value << end(); put(Memory, x.value, new_address); // increment refcount of new address if (new_address) { int new_refcount = get_or_insert(Memory, new_address); assert(new_refcount >= 0); // == 0 only when new_address == old_address trace(9999, "mem") << "incrementing refcount of " << new_address << ": " << new_refcount << " -> " << (new_refcount+1) << end(); put(Memory, new_address, new_refcount+1); } // abandon old address if necessary // do this after all refcount updates are done just in case old and new are identical assert(old_address >= 0); if (old_address == 0) return; assert(get_or_insert(Memory, old_address) >= 0); if (get_or_insert(Memory, old_address) > 0) return; // lookup_memory without drop_one_lookup { trace(9999, "mem") << "automatically abandoning " << old_address << end(); trace(9999, "mem") << "computing size to abandon at " << x.value << end(); x.set_value(old_address+/*skip refcount*/1); drop_from_type(x, "address"); drop_from_type(x, "shared"); // } abandon(old_address, size_of(x)+/*refcount*/1); return; } :(scenario refcounts_2) def main [ 1:address:shared:number <- new number:type # over-writing one allocation with another 1:address:shared:number <- new number:type 1:address:shared:number <- copy 0 ] +run: {1: ("address" "shared" "number")} <- new {number: "type"} +mem: incrementing refcount of 1000: 0 -> 1 +run: {1: ("address" "shared" "number")} <- new {number: "type"} +mem: automatically abandoning 1000 :(scenario refcounts_3) def main [ 1:address:shared:number <- new number:type # passing in addresses to recipes increments refcount foo 1:address:shared:number 1:address:shared:number <- copy 0 ] def foo [ 2:address:shared:number <- next-ingredient # return does NOT yet decrement refcount; memory must be explicitly managed 2:address:shared:number <- copy 0 ] +run: {1: ("address" "shared" "number")} <- new {number: "type"} +mem: incrementing refcount of 1000: 0 -> 1 +run: {2: ("address" "shared" "number")} <- next-ingredient +mem: incrementing refcount of 1000: 1 -> 2 +run: {2: ("address" "shared" "number")} <- copy {0: "literal"} +mem: decrementing refcount of 1000: 2 -> 1 +run: {1: ("address" "shared" "number")} <- copy {0: "literal"} +mem: decrementing refcount of 1000: 1 -> 0 +mem: automatically abandoning 1000 :(scenario refcounts_4) def main [ 1:address:shared:number <- new number:type # idempotent copies leave refcount unchanged 1:address:shared:number <- copy 1:address:shared:number ] +run: {1: ("address" "shared" "number")} <- new {number: "type"} +mem: incrementing refcount of 1000: 0 -> 1 +run: {1: ("address" "shared" "number")} <- copy {1: ("address" "shared" "number")} +mem: decrementing refcount of 1000: 1 -> 0 +mem: incrementing refcount of 1000: 0 -> 1 :(scenario refcounts_5) def main [ 1:address:shared:number <- new number:type # passing in addresses to recipes increments refcount foo 1:address:shared:number # return does NOT yet decrement refcount; memory must be explicitly managed 1:address:shared:number <- new number:type ] def foo [ 2:address:shared:number <- next-ingredient ] +run: {1: ("address" "shared" "number")} <- new {number: "type"} +mem: incrementing refcount of 1000: 0 -> 1 +run: {2: ("address" "shared" "number")} <- next-ingredient +mem: incrementing refcount of 1000: 1 -> 2 +run: {1: ("address" "shared" "number")} <- new {number: "type"} +mem: decrementing refcount of 1000: 2 -> 1 :(scenario refcounts_array) def main [ 1:number <- copy 30 # allocate an array 10:address:shared:array:number <- new number:type, 20 11:number <- copy 10:address:shared:array:number # allocate another array in its place, implicitly freeing the previous allocation 10:address:shared:array:number <- new number:type, 25 ] +run: {10: ("address" "shared" "array" "number")} <- new {number: "type"}, {20: "literal"} # abandoned array is of old size (20, not 25) +abandon: saving in free-list of size 22 //:: Extend 'new' to handle a unicode string literal argument. :(scenario new_string) def main [ 1:address:shared:array:character <- new [abc def] 2:character <- index *1:address:shared:array:character, 5 ] # number code for 'e' +mem: storing 101 in location 2 :(scenario new_string_handles_unicode) def main [ 1:address:shared:array:character <- new [a«c] 2:number <- length *1:address:shared:array:character 3:character <- index *1:address:shared:array:character, 1 ] +mem: storing 3 in location 2 # unicode for '«' +mem: storing 171 in location 3 :(before "End NEW Check Special-cases") if (is_literal_string(inst.ingredients.at(0))) break; :(before "Convert 'new' To 'allocate'") if (inst.name == "new" && is_literal_string(inst.ingredients.at(0))) continue; :(after "case NEW" following "Primitive Recipe Implementations") if (is_literal_string(current_instruction().ingredients.at(0))) { products.resize(1); products.at(0).push_back(new_mu_string(current_instruction().ingredients.at(0).name)); trace(9999, "mem") << "new string alloc: " << products.at(0).at(0) << end(); break; } :(code) int new_mu_string(const string& contents) { // allocate an array just large enough for it int string_length = unicode_length(contents); //? Total_alloc += string_length+1; //? Num_alloc++; ensure_space(string_length+1); // don't forget the extra location for array size // initialize string int result = Current_routine->alloc; // initialize refcount put(Memory, Current_routine->alloc++, 0); // store length put(Memory, Current_routine->alloc++, string_length); int curr = 0; const char* raw_contents = contents.c_str(); for (int i = 0; i < string_length; ++i) { uint32_t curr_character; assert(curr < SIZE(contents)); tb_utf8_char_to_unicode(&curr_character, &raw_contents[curr]); put(Memory, Current_routine->alloc, curr_character); curr += tb_utf8_char_length(raw_contents[curr]); ++Current_routine->alloc; } // mu strings are not null-terminated in memory return result; } //: stash recognizes strings :(scenario stash_string) def main [ 1:address:shared:array:character <- new [abc] stash [foo:], 1:address:shared:array:character ] +app: foo: abc :(before "End print Special-cases(reagent r, data)") if (is_mu_string(r)) { assert(scalar(data)); return read_mu_string(data.at(0))+' '; } :(scenario unicode_string) def main [ 1:address:shared:array:character <- new [♠] stash [foo:], 1:address:shared:array:character ] +app: foo: ♠ :(scenario stash_space_after_string) def main [ 1:address:shared:array:character <- new [abc] stash 1:address:shared:array:character, [foo] ] +app: abc foo //: Allocate more to routine when initializing a literal string :(scenario new_string_overflow) % Initial_memory_per_routine = 2; def main [ 1:address:shared:number/raw <- new number:type 2:address:shared:array:character/raw <- new [a] # not enough room in initial page, if you take the array size into account ] +new: routine allocated memory from 1000 to 1002 +new: routine allocated memory from 1002 to 1004 //: helpers :(code) int unicode_length(const string& s) { const char* in = s.c_str(); int result = 0; int curr = 0; while (curr < SIZE(s)) { // carefully bounds-check on the string // before accessing its raw pointer ++result; curr += tb_utf8_char_length(in[curr]); } return result; } string read_mu_string(int address) { if (address == 0) return ""; address++; // skip refcount int size = get_or_insert(Memory, address); if (size == 0) return ""; ostringstream tmp; for (int curr = address+1; curr <= address+size; ++curr) { tmp << to_unicode(static_cast(get_or_insert(Memory, curr))); } return tmp.str(); } bool is_mu_type_literal(reagent r) { return is_literal(r) && r.type && r.type->name == "type"; }