//: So far we've been calling a fixed recipe in each instruction, but we'd //: also like to make the recipe a variable, pass recipes to "higher-order" //: recipes, return recipes from recipes and so on. :(scenario call_literal_recipe) recipe main [ 1:number <- call f:recipe, 34 ] recipe f [ 2:number <- next-ingredient reply 2:number ] +mem: storing 34 in location 1 :(scenario call_variable) recipe main [ 1:recipe-ordinal <- copy f:recipe 2:number <- call 1:recipe-ordinal, 34 ] recipe f [ 3:number <- next-ingredient reply 3:number ] +mem: storing 34 in location 2 #? ? :(before "End Mu Types Initialization") // 'recipe' is a literal Type_ordinal["recipe"] = 0; // 'recipe-ordinal' is the literal that can store recipe literals type_ordinal recipe_ordinal = Type_ordinal["recipe-ordinal"] = Next_type_ordinal++; Type[recipe_ordinal].name = "recipe-ordinal"; :(before "End Reagent-parsing Exceptions") if (!r.properties.at(0).second.empty() && r.properties.at(0).second.at(0) == "recipe") { r.set_value(Recipe_ordinal[r.name]); return; } :(before "End Primitive Recipe Declarations") CALL, :(before "End Primitive Recipe Numbers") Recipe_ordinal["call"] = CALL; :(before "End Primitive Recipe Implementations") case CALL: { if (ingredients.empty()) { raise << current_recipe_name() << ": 'call' requires at least one ingredient (the recipe to call)\n" << end(); break; } // Begin Call if (!scalar(ingredients.at(0))) { raise << current_recipe_name() << ": first ingredient of 'call' should be a recipe, but got " << current_instruction().ingredients.at(0).original_string << '\n' << end(); break; } // todo: when we start doing type checking this will be a prime point of // attention, so we don't accidentally allow external data to a program to // run as code. Current_routine->calls.push_front(call(ingredients.at(0).at(0))); ingredients.erase(ingredients.begin()); // drop the callee goto call_housekeeping; }