//: Structured programming //: //: Our jump recipes are quite inconvenient to use, so mu provides a //: lightweight tool called 'transform_braces' to work in a slightly more //: convenient format with nested braces: //: //: { //: some instructions //: { //: more instructions //: } //: } //: //: Braces are just labels, they require no special parsing. The pseudo //: recipes 'loop' and 'break' jump to just after the enclosing '{' and '}' //: respectively. //: //: Conditional and unconditional 'loop' and 'break' should give us 80% of the //: benefits of the control-flow primitives we're used to in other languages, //: like 'if', 'while', 'for', etc. :(scenarios transform) :(scenario brace_conversion) def main [ { break 1:number <- copy 0 } ] +transform: --- transform braces for recipe main +transform: jump 1:offset +transform: copy ... :(before "End Instruction Modifying Transforms") Transform.push_back(transform_braces); // idempotent :(code) void transform_braces(const recipe_ordinal r) { const int OPEN = 0, CLOSE = 1; // use signed integer for step index because we'll be doing arithmetic on it list > braces; trace(9991, "transform") << "--- transform braces for recipe " << get(Recipe, r).name << end(); //? cerr << "--- transform braces for recipe " << get(Recipe, r).name << '\n'; for (int index = 0; index < SIZE(get(Recipe, r).steps); ++index) { const instruction& inst = get(Recipe, r).steps.at(index); if (inst.label == "{") { trace(9993, "transform") << maybe(get(Recipe, r).name) << "push (open, " << index << ")" << end(); braces.push_back(pair(OPEN, index)); } if (inst.label == "}") { trace(9993, "transform") << "push (close, " << index << ")" << end(); braces.push_back(pair(CLOSE, index)); } } stack open_braces; for (int index = 0; index < SIZE(get(Recipe, r).steps); ++index) { instruction& inst = get(Recipe, r).steps.at(index); if (inst.label == "{") { open_braces.push(index); continue; } if (inst.label == "}") { if (open_braces.empty()) { raise << "missing '{' in " << get(Recipe, r).name << '\n' << end(); return; } open_braces.pop(); continue; } if (inst.is_label) continue; if (inst.old_name != "loop" && inst.old_name != "loop-if" && inst.old_name != "loop-unless" && inst.old_name != "break" && inst.old_name != "break-if" && inst.old_name != "break-unless") { trace(9992, "transform") << inst.old_name << " ..." << end(); continue; } // check for errors if (inst.old_name.find("-if") != string::npos || inst.old_name.find("-unless") != string::npos) { if (inst.ingredients.empty()) { raise << inst.old_name << " expects 1 or 2 ingredients, but got none\n" << end(); continue; } } // update instruction operation if (inst.old_name.find("-if") != string::npos) { inst.name = "jump-if"; inst.operation = JUMP_IF; } else if (inst.old_name.find("-unless") != string::npos) { inst.name = "jump-unless"; inst.operation = JUMP_UNLESS; } else { inst.name = "jump"; inst.operation = JUMP; } // check for explicitly provided targets if (inst.old_name.find("-if") != string::npos || inst.old_name.find("-unless") != string::npos) { // conditional branches check arg 1 if (SIZE(inst.ingredients) > 1 && is_literal(inst.ingredients.at(1))) { trace(9992, "transform") << inst.name << ' ' << inst.ingredients.at(1).name << ":offset" << end(); continue; } } else { // unconditional branches check arg 0 if (!inst.ingredients.empty() && is_literal(inst.ingredients.at(0))) { trace(9992, "transform") << "jump " << inst.ingredients.at(0).name << ":offset" << end(); continue; } } // if implicit, compute target reagent target; target.type = new type_tree("offset", get(Type_ordinal, "offset")); target.set_value(0); if (open_braces.empty()) raise << inst.old_name << " needs a '{' before\n" << end(); else if (inst.old_name.find("loop") != string::npos) target.set_value(open_braces.top()-index); else // break instruction target.set_value(matching_brace(open_braces.top(), braces, r) - index - 1); inst.ingredients.push_back(target); // log computed target if (inst.name == "jump") trace(9992, "transform") << "jump " << no_scientific(target.value) << ":offset" << end(); else trace(9992, "transform") << inst.name << ' ' << inst.ingredients.at(0).name << ", " << no_scientific(target.value) << ":offset" << end(); } } // returns a signed integer not just so that we can return -1 but also to // enable future signed arithmetic int matching_brace(int index, const list >& braces, recipe_ordinal r) { int stacksize = 0; for (list >::const_iterator p = braces.begin(); p != braces.end(); ++p) { if (p->second < index) continue; stacksize += (p->first ? 1 : -1); if (stacksize == 0) return p->second; } raise << maybe(get(Recipe, r).name) << "unbalanced '{'\n" << end(); return SIZE(get(Recipe, r).steps); // exit current routine } :(scenario loop) def main [ 1:number <- copy 0 2:number <- copy 0 { 3:number <- copy 0 loop } ] +transform: --- transform braces for recipe main +transform: copy ... +transform: copy ... +transform: copy ... +transform: jump -2:offset :(scenario break_empty_block) def main [ 1:number <- copy 0 { break } ] +transform: --- transform braces for recipe main +transform: copy ... +transform: jump 0:offset :(scenario break_cascading) def main [ 1:number <- copy 0 { break } { break } ] +transform: --- transform braces for recipe main +transform: copy ... +transform: jump 0:offset +transform: jump 0:offset :(scenario break_cascading_2) def main [ 1:number <- copy 0 2:number <- copy 0 { break 3:number <- copy 0 } { break } ] +transform: --- transform braces for recipe main +transform: copy ... +transform: copy ... +transform: jump 1:offset +transform: copy ... +transform: jump 0:offset :(scenario break_if) def main [ 1:number <- copy 0 2:number <- copy 0 { break-if 2:number 3:number <- copy 0 } { break } ] +transform: --- transform braces for recipe main +transform: copy ... +transform: copy ... +transform: jump-if 2, 1:offset +transform: copy ... +transform: jump 0:offset :(scenario break_nested) def main [ 1:number <- copy 0 { 2:number <- copy 0 break { 3:number <- copy 0 } 4:number <- copy 0 } ] +transform: jump 4:offset :(scenario break_nested_degenerate) def main [ 1:number <- copy 0 { 2:number <- copy 0 break { } 4:number <- copy 0 } ] +transform: jump 3:offset :(scenario break_nested_degenerate_2) def main [ 1:number <- copy 0 { 2:number <- copy 0 break { } } ] +transform: jump 2:offset :(scenario break_label) % Hide_errors = true; def main [ 1:number <- copy 0 { break +foo:offset } ] +transform: jump +foo:offset :(scenario break_unless) def main [ 1:number <- copy 0 2:number <- copy 0 { break-unless 2:number 3:number <- copy 0 } ] +transform: --- transform braces for recipe main +transform: copy ... +transform: copy ... +transform: jump-unless 2, 1:offset +transform: copy ... :(scenario loop_unless) def main [ 1:number <- copy 0 2:number <- copy 0 { loop-unless 2:number 3:number <- copy 0 } ] +transform: --- transform braces for recipe main +transform: copy ... +transform: copy ... +transform: jump-unless 2, -1:offset +transform: copy ... :(scenario loop_nested) def main [ 1:number <- copy 0 { 2:number <- copy 0 { 3:number <- copy 0 } loop-if 4:boolean 5:number <- copy 0 } ] +transform: --- transform braces for recipe main +transform: jump-if 4, -5:offset :(scenario loop_label) def main [ 1:number <- copy 0 +foo 2:number <- copy 0 ] +transform: --- transform braces for recipe main +transform: copy ... +transform: copy ... //: test how things actually run :(scenarios run) :(scenario brace_conversion_and_run) def test-factorial [ 1:number <- copy 5 2:number <- copy 1 { 3:boolean <- equal 1:number, 1 break-if 3:boolean # $print 1:number 2:number <- multiply 2:number, 1:number 1:number <- subtract 1:number, 1 loop } 4:number <- copy 2:number # trigger a read ] +mem: location 2 is 120 :(scenario break_outside_braces_fails) % Hide_errors = true; def main [ break ] +error: break needs a '{' before :(scenario break_conditional_without_ingredient_fails) % Hide_errors = true; def main [ { break-if } ] +error: break-if expects 1 or 2 ingredients, but got none //: Using break we can now implement conditional returns. :(scenario return_if) def main [ 1:number <- test1 ] def test1 [ return-if 0, 34 return 35 ] +mem: storing 35 in location 1 :(scenario return_if_2) def main [ 1:number <- test1 ] def test1 [ return-if 1, 34 return 35 ] +mem: storing 34 in location 1 :(before "End Rewrite Instruction(curr, recipe result)") // rewrite `return-if a, b, c, ...` to // ``` // { // break-unless a // return b, c, ... // } // ``` if (curr.name == "return-if" || curr.name == "reply-if") { if (curr.products.empty()) { emit_return_block(result, "break-unless", curr.ingredients); curr.clear(); } else { raise << "'" << curr.name << "' never yields any products\n" << end(); } } // rewrite `return-unless a, b, c, ...` to // ``` // { // break-if a // return b, c, ... // } // ``` if (curr.name == "return-unless" || curr.name == "reply-unless") { if (curr.products.empty()) { emit_return_block(result, "break-if", curr.ingredients); curr.clear(); } else { raise << "'" << curr.name << "' never yields any products\n" << end(); } } :(code) void emit_return_block(recipe& out, const string& break_command, const vector& ingredients) { reagent/*copy*/ condition = ingredients.at(0); vector return_ingredients; copy(++ingredients.begin(), ingredients.end(), inserter(return_ingredients, return_ingredients.end())); // { instruction open_label; open_label.is_label=true; open_label.label = "{"; out.steps.push_back(open_label); // instruction break_inst; break_inst.operation = get(Recipe_ordinal, break_command); break_inst.name = break_inst.old_name = break_command; break_inst.ingredients.push_back(condition); out.steps.push_back(break_inst); // return instruction return_inst; return_inst.operation = get(Recipe_ordinal, "return"); return_inst.name = "return"; return_inst.ingredients.swap(return_ingredients); out.steps.push_back(return_inst); // } instruction close_label; close_label.is_label=true; close_label.label = "}"; out.steps.push_back(close_label); } //: Make sure these pseudo recipes get consistent numbers in all tests, even //: though they aren't implemented. Allows greater flexibility in ordering //: transforms. :(before "End Primitive Recipe Declarations") BREAK, BREAK_IF, BREAK_UNLESS, LOOP, LOOP_IF, LOOP_UNLESS, :(before "End Primitive Recipe Numbers") put(Recipe_ordinal, "break", BREAK); put(Recipe_ordinal, "break-if", BREAK_IF); put(Recipe_ordinal, "break-unless", BREAK_UNLESS); put(Recipe_ordinal, "loop", LOOP); put(Recipe_ordinal, "loop-if", LOOP_IF); put(Recipe_ordinal, "loop-unless", LOOP_UNLESS); :(before "End Primitive Recipe Checks") case BREAK: break; case BREAK_IF: break; case BREAK_UNLESS: break; case LOOP: break; case LOOP_IF: break; case LOOP_UNLESS: break;