//: A big convenience high-level languages provide is the ability to name memory //: locations. In Mu, a transform called 'transform_names' provides this //: convenience. void test_transform_names() { run( "def main [\n" " x:num <- copy 0\n" "]\n" ); CHECK_TRACE_CONTENTS( "name: assign x 2\n" "mem: storing 0 in location 2\n" ); } void test_transform_names_fails_on_use_before_define() { Hide_errors = true; transform( "def main [\n" " x:num <- copy y:num\n" "]\n" ); CHECK_TRACE_CONTENTS( "error: main: tried to read ingredient 'y' in 'x:num <- copy y:num' but it hasn't been written to yet\n" ); } // todo: detect conditional defines :(after "End Type Modifying Transforms") Transform.push_back(transform_names); // idempotent :(before "End Globals") map > Name; //: the Name map is a global, so save it before tests and reset it for every //: test, just to be safe. :(before "End Globals") map > Name_snapshot; :(before "End save_snapshots") Name_snapshot = Name; :(before "End restore_snapshots") Name = Name_snapshot; :(code) void transform_names(const recipe_ordinal r) { recipe& caller = get(Recipe, r); trace(101, "transform") << "--- transform names for recipe " << caller.name << end(); bool names_used = false; bool numeric_locations_used = false; map& names = Name[r]; // record the indices 'used' so far in the map int& curr_idx = names[""]; // reserve indices 0 and 1 for the chaining slot in a later layer. // transform_names may get called multiple times in later layers, so // curr_idx may already be set. if (curr_idx < 2) curr_idx = 2; for (int i = 0; i < SIZE(caller.steps); ++i) { instruction& inst = caller.steps.at(i); // End transform_names(inst) Special-cases // map names to addresses for (int in = 0; in < SIZE(inst.ingredients); ++in) { reagent& ingredient = inst.ingredients.at(in); if (is_disqualified(ingredient, inst, caller.name)) continue; if (is_numeric_location(ingredient)) numeric_locations_used = true; if (is_named_location(ingredient)) names_used = true; if (is_integer(ingredient.name)) continue; if (!already_transformed(ingredient, names)) { raise << maybe(caller.name) << "tried to read ingredient '" << ingredient.name << "' in '" << to_original_string(inst) << "' but it hasn't been written to yet\n" << end(); // use-before-set Error return; } int v = lookup_name(ingredient, r); if (v >= 0) { ingredient.set_value(v); // Done Placing Ingredient(ingredient, inst, caller) } else { raise << maybe(caller.name) << "can't find a place to store '" << ingredient.name << "'\n" << end(); return; } } for (int out = 0; out < SIZE(inst.products); ++out) { reagent& product = inst.products.at(out); if (is_disqualified(product, inst, caller.name)) continue; if (is_numeric_location(product)) numeric_locations_used = true; if (is_named_location(product)) names_used = true; if (is_integer(product.name)) continue; if (names.find(product.name) == names.end()) { trace(103, "name") << "assign " << product.name << " " << curr_idx << end(); names[product.name] = curr_idx; curr_idx += size_of(product); } int v = lookup_name(product, r); if (v >= 0) { product.set_value(v); // Done Placing Product(product, inst, caller) } else { raise << maybe(caller.name) << "can't find a place to store '" << product.name << "'\n" << end(); return; } } } if (names_used && numeric_locations_used) raise << maybe(caller.name) << "mixing variable names and numeric addresses\n" << end(); } bool is_disqualified(/*mutable*/ reagent& x, const instruction& inst, const string& recipe_name) { if (!x.type) { raise << maybe(recipe_name) << "missing type for '" << x.original_string << "' in '" << to_original_string(inst) << "'\n" << end(); // missing-type Error 1 return true; } if (is_raw(x)) return true; if (is_literal(x)) return true; // End is_disqualified Special-cases if (x.initialized) return true; return false; } bool already_transformed(const reagent& r, const map& names) { return contains_key(names, r.name); } int lookup_name(const reagent& r, const recipe_ordinal default_recipe) { return Name[default_recipe][r.name]; } type_ordinal skip_addresses(type_tree* type) { while (type && is_compound_type_starting_with(type, "address")) type = type->right; if (!type) return -1; // error handled elsewhere if (type->atom) return type->value; const type_tree* base_type = type; // Update base_type in skip_addresses if (base_type->atom) return base_type->value; assert(base_type->left->atom); return base_type->left->value; } bool is_compound_type_starting_with(const type_tree* type, const string& expected_name) { if (!type) return false; if (type->atom) return false; if (!type->left->atom) return false; return type->left->value == get(Type_ordinal, expected_name); } int find_element_offset(const type_ordinal t, const string& name, const string& recipe_name) { const type_info& container = get(Type, t); for (int i = 0; i < SIZE(container.elements); ++i) if (container.elements.at(i).name == name) return i; raise << maybe(recipe_name) << "unknown element '" << name << "' in container '" << get(Type, t).name << "'\n" << end(); return -1; } int find_element_location(int base_address, const string& name, const type_tree* type, const string& recipe_name) { int offset = find_element_offset(get_base_type(type)->value, name, recipe_name); if (offset == -1) return offset; int result = base_address; for (int i = 0; i < offset; ++i) result += size_of(element_type(type, i)); return result; } bool is_numeric_location(const reagent& x) { if (is_literal(x)) return false; if (is_raw(x)) return false; if (x.name == "0") return false; // used for chaining lexical scopes return is_integer(x.name); } bool is_named_location(const reagent& x) { if (is_literal(x)) return false; if (is_raw(x)) return false; if (is_special_name(x.name)) return false; return !is_integer(x.name); } // all names here should either be disqualified or also in bind_special_scenario_names bool is_special_name(const string& s) { if (s == "_") return true; if (s == "0") return true; // End is_special_name Special-cases return false; } bool is_raw(const reagent& r) { return has_property(r, "raw"); } void test_transform_names_supports_containers() { transform( "def main [\n" " x:point <- merge 34, 35\n" " y:num <- copy 3\n" "]\n" ); CHECK_TRACE_CONTENTS( "name: assign x 2\n" // skip location 3 because x occupies two locations "name: assign y 4\n" ); } void test_transform_names_supports_static_arrays() { transform( "def main [\n" " x:@:num:3 <- create-array\n" " y:num <- copy 3\n" "]\n" ); CHECK_TRACE_CONTENTS( "name: assign x 2\n" // skip locations 3, 4, 5 because x occupies four locations "name: assign y 6\n" ); } void test_transform_names_passes_dummy() { transform( "def main [\n" // _ is just a dummy result that never gets consumed " _, x:num <- copy 0, 1\n" "]\n" ); CHECK_TRACE_CONTENTS( "name: assign x 2\n" ); CHECK_TRACE_DOESNT_CONTAIN("name: assign _ 2"); } //: an escape hatch to suppress name conversion that we'll use later void test_transform_names_passes_raw() { Hide_errors = true; run( "def main [\n" " x:num/raw <- copy 0\n" "]\n" ); CHECK_TRACE_DOESNT_CONTAIN("name: assign x 2"); CHECK_TRACE_CONTENTS( "error: can't write to location 0 in 'x:num/raw <- copy 0'\n" ); } void test_transform_names_fails_when_mixing_names_and_numeric_locations() { Hide_errors = true; transform( "def main [\n" " x:num <- copy 1:num\n" "]\n" ); CHECK_TRACE_CONTENTS( "error: main: mixing variable names and numeric addresses\n" ); } void test_transform_names_fails_when_mixing_names_and_numeric_locations_2() { Hide_errors = true; transform( "def main [\n" " x:num <- copy 1\n" " 1:num <- copy x:num\n" "]\n" ); CHECK_TRACE_CONTENTS( "error: main: mixing variable names and numeric addresses\n" ); } void test_transform_names_does_not_fail_when_mixing_names_and_raw_locations() { transform( "def main [\n" " x:num <- copy 1:num/raw\n" "]\n" ); CHECK_TRACE_DOESNT_CONTAIN("error: main: mixing variable names and numeric addresses"); CHECK_TRACE_COUNT("error", 0); } void test_transform_names_does_not_fail_when_mixing_names_and_literals() { transform( "def main [\n" " x:num <- copy 1\n" "]\n" ); CHECK_TRACE_DOESNT_CONTAIN("error: main: mixing variable names and numeric addresses"); CHECK_TRACE_COUNT("error", 0); } //:: Support element names for containers in 'get' and 'get-location' and 'put'. //: (get-location is implemented later) :(before "End update GET offset_value in Check") else { if (!offset.initialized) { raise << maybe(get(Recipe, r).name) << "uninitialized offset '" << offset.name << "' in '" << to_original_string(inst) << "'\n" << end(); break; } offset_value = offset.value; } :(code) void test_transform_names_transforms_container_elements() { transform( "def main [\n" " p:&:point <- copy null\n" " a:num <- get *p:&:point, y:offset\n" " b:num <- get *p:&:point, x:offset\n" "]\n" ); CHECK_TRACE_CONTENTS( "name: element y of type point is at offset 1\n" "name: element x of type point is at offset 0\n" ); } :(before "End transform_names(inst) Special-cases") // replace element names of containers with offsets if (inst.name == "get" || inst.name == "get-location" || inst.name == "put") { //: avoid raising any errors here; later layers will support overloading new //: instructions with the same names (static dispatch), which could lead to //: spurious errors if (SIZE(inst.ingredients) < 2) break; // error raised elsewhere if (!is_literal(inst.ingredients.at(1))) break; // error raised elsewhere if (inst.ingredients.at(1).name.find_first_not_of("0123456789") != string::npos) { // since first non-address in base type must be a container, we don't have to canonize type_ordinal base_type = skip_addresses(inst.ingredients.at(0).type); if (contains_key(Type, base_type)) { // otherwise we'll raise an error elsewhere inst.ingredients.at(1).set_value(find_element_offset(base_type, inst.ingredients.at(1).name, get(Recipe, r).name)); trace(103, "name") << "element " << inst.ingredients.at(1).name << " of type " << get(Type, base_type).name << " is at offset " << no_scientific(inst.ingredients.at(1).value) << end(); } } } :(code) void test_missing_type_in_get() { Hide_errors = true; transform( "def main [\n" " get a, x:offset\n" "]\n" ); CHECK_TRACE_CONTENTS( "error: main: missing type for 'a' in 'get a, x:offset'\n" ); } void test_transform_names_handles_containers() { transform( "def main [\n" " a:point <- merge 0, 0\n" " b:num <- copy 0\n" "]\n" ); CHECK_TRACE_CONTENTS( "name: assign a 2\n" "name: assign b 4\n" ); } //:: Support variant names for exclusive containers in 'maybe-convert'. void test_transform_names_handles_exclusive_containers() { run( "def main [\n" " 12:num <- copy 1\n" " 13:num <- copy 35\n" " 14:num <- copy 36\n" " 20:point, 22:bool <- maybe-convert 12:number-or-point/unsafe, p:variant\n" "]\n" ); CHECK_TRACE_CONTENTS( "name: variant p of type number-or-point has tag 1\n" "mem: storing 1 in location 22\n" "mem: storing 35 in location 20\n" "mem: storing 36 in location 21\n" ); } :(before "End transform_names(inst) Special-cases") // convert variant names of exclusive containers if (inst.name == "maybe-convert") { if (SIZE(inst.ingredients) != 2) { raise << maybe(get(Recipe, r).name) << "exactly 2 ingredients expected in '" << to_original_string(inst) << "'\n" << end(); break; } assert(is_literal(inst.ingredients.at(1))); if (inst.ingredients.at(1).name.find_first_not_of("0123456789") != string::npos) { // since first non-address in base type must be an exclusive container, we don't have to canonize type_ordinal base_type = skip_addresses(inst.ingredients.at(0).type); if (contains_key(Type, base_type)) { // otherwise we'll raise an error elsewhere inst.ingredients.at(1).set_value(find_element_offset(base_type, inst.ingredients.at(1).name, get(Recipe, r).name)); trace(103, "name") << "variant " << inst.ingredients.at(1).name << " of type " << get(Type, base_type).name << " has tag " << no_scientific(inst.ingredients.at(1).value) << end(); } } } :(code) void test_missing_type_in_maybe_convert() { Hide_errors = true; run( "def main [\n" " maybe-convert a, x:variant\n" "]\n" ); CHECK_TRACE_CONTENTS( "error: main: missing type for 'a' in 'maybe-convert a, x:variant'\n" ); }