//: A simple memory allocator to create space for new variables at runtime. :(scenarios run) :(scenario new) # call new two times with identical arguments; you should get back different results recipe main [ 1:address:number/raw <- new number:type 2:address:number/raw <- new number:type 3:boolean/raw <- equal 1:address:number/raw, 2:address:number/raw ] +mem: storing 0 in location 3 :(before "End Globals") long long int Memory_allocated_until = Reserved_for_tests; long long int Initial_memory_per_routine = 100000; :(before "End Setup") Memory_allocated_until = Reserved_for_tests; Initial_memory_per_routine = 100000; :(before "End routine Fields") long long int alloc, alloc_max; :(before "End routine Constructor") alloc = Memory_allocated_until; Memory_allocated_until += Initial_memory_per_routine; alloc_max = Memory_allocated_until; trace(Primitive_recipe_depth, "new") << "routine allocated memory from " << alloc << " to " << alloc_max << end(); //:: First handle 'type' operands. :(before "End Mu Types Initialization") Type_ordinal["type"] = 0; :(after "Per-recipe Transforms") // replace type names with type_ordinals if (inst.operation == Recipe_ordinal["new"]) { // End NEW Transform Special-cases // first arg must be of type 'type' if (inst.ingredients.empty()) raise << Recipe[r].name << ": 'new' expects one or two ingredients\n" << end(); if (inst.ingredients.at(0).properties.empty() || inst.ingredients.at(0).properties.at(0).second.empty() || inst.ingredients.at(0).properties.at(0).second.at(0) != "type") raise << Recipe[r].name << ": first ingredient of 'new' should be a type, but got " << inst.ingredients.at(0).original_string << '\n' << end(); if (Type_ordinal.find(inst.ingredients.at(0).name) == Type_ordinal.end()) raise << Recipe[r].name << ": unknown type " << inst.ingredients.at(0).name << '\n' << end(); inst.ingredients.at(0).set_value(Type_ordinal[inst.ingredients.at(0).name]); trace(Primitive_recipe_depth, "new") << inst.ingredients.at(0).name << " -> " << inst.ingredients.at(0).name << end(); end_new_transform:; } //:: Now implement the primitive recipe. //: todo: build 'new' in mu itself :(before "End Primitive Recipe Declarations") NEW, :(before "End Primitive Recipe Numbers") Recipe_ordinal["new"] = NEW; :(before "End Primitive Recipe Implementations") case NEW: { if (ingredients.empty() || SIZE(ingredients) > 2) { raise << current_recipe_name() << ": 'new' requires one or two ingredients, but got " << current_instruction().to_string() << '\n' << end(); break; } if (!scalar(ingredients.at(0))) { raise << current_recipe_name() << ": first ingredient of 'new' should be a type, but got " << current_instruction().ingredients.at(0).original_string << '\n' << end(); break; } // compute the space we need long long int size = 0; long long int array_length = 0; { vector type; type.push_back(current_instruction().ingredients.at(0).value); if (SIZE(current_instruction().ingredients) > 1) { // array array_length = ingredients.at(1).at(0); trace(Primitive_recipe_depth, "mem") << "array size is " << array_length << end(); size = array_length*size_of(type) + /*space for length*/1; } else { // scalar size = size_of(type); } } //? Total_alloc += size; //? Num_alloc++; // compute the region of memory to return // really crappy at the moment ensure_space(size); const long long int result = Current_routine->alloc; trace(Primitive_recipe_depth, "mem") << "new alloc: " << result << end(); // save result products.resize(1); products.at(0).push_back(result); // initialize allocated space for (long long int address = result; address < result+size; ++address) { Memory[address] = 0; } if (SIZE(current_instruction().ingredients) > 1) { Memory[result] = array_length; } // bump Current_routine->alloc += size; // no support for reclaiming memory assert(Current_routine->alloc <= Current_routine->alloc_max); break; } //? :(before "End Globals") //? long long int Total_alloc = 0; //? long long int Num_alloc = 0; //? long long int Total_free = 0; //? long long int Num_free = 0; //? :(before "End Setup") //? Total_alloc = Num_alloc = Total_free = Num_free = 0; //? :(before "End Teardown") //? cerr << Total_alloc << "/" << Num_alloc //? << " vs " << Total_free << "/" << Num_free << '\n'; //? cerr << SIZE(Memory) << '\n'; :(code) void ensure_space(long long int size) { if (size > Initial_memory_per_routine) { tb_shutdown(); cerr << "can't allocate " << size << " locations, that's too much.\n"; exit(0); } if (Current_routine->alloc + size > Current_routine->alloc_max) { // waste the remaining space and create a new chunk Current_routine->alloc = Memory_allocated_until; Memory_allocated_until += Initial_memory_per_routine; Current_routine->alloc_max = Memory_allocated_until; trace(Primitive_recipe_depth, "new") << "routine allocated memory from " << Current_routine->alloc << " to " << Current_routine->alloc_max << end(); } } :(scenario new_initializes) % Memory_allocated_until = 10; % Memory[Memory_allocated_until] = 1; recipe main [ 1:address:number <- new number:type 2:number <- copy *1:address:number ] +mem: storing 0 in location 2 :(scenario new_array) recipe main [ 1:address:array:number/raw <- new number:type, 5 2:address:number/raw <- new number:type 3:number/raw <- subtract 2:address:number/raw, 1:address:array:number/raw ] +run: 1:address:array:number/raw <- new number:type, 5 +mem: array size is 5 # don't forget the extra location for array size +mem: storing 6 in location 3 :(scenario new_empty_array) recipe main [ 1:address:array:number/raw <- new number:type, 0 2:address:number/raw <- new number:type 3:number/raw <- subtract 2:address:number/raw, 1:address:array:number/raw ] +run: 1:address:array:number/raw <- new number:type, 0 +mem: array size is 0 +mem: storing 1 in location 3 //: Make sure that each routine gets a different alloc to start. :(scenario new_concurrent) recipe f1 [ start-running f2:recipe 1:address:number/raw <- new number:type # wait for f2 to complete { loop-unless 4:number/raw } ] recipe f2 [ 2:address:number/raw <- new number:type # hack: assumes scheduler implementation 3:boolean/raw <- equal 1:address:number/raw, 2:address:number/raw # signal f2 complete 4:number/raw <- copy 1 ] +mem: storing 0 in location 3 //: If a routine runs out of its initial allocation, it should allocate more. :(scenario new_overflow) % Initial_memory_per_routine = 2; recipe main [ 1:address:number/raw <- new number:type 2:address:point/raw <- new point:type # not enough room in initial page ] +new: routine allocated memory from 1000 to 1002 +new: routine allocated memory from 1002 to 1004 //: We also provide a way to return memory, and to reuse reclaimed memory. //: todo: custodians, etc. Following malloc/free is a temporary hack. :(scenario new_reclaim) recipe main [ 1:address:number <- new number:type abandon 1:address:number 2:address:number <- new number:type # must be same size as abandoned memory to reuse 3:boolean <- equal 1:address:number, 2:address:number ] # both allocations should have returned the same address +mem: storing 1 in location 3 :(before "End Globals") map Free_list; :(before "End Setup") Free_list.clear(); :(before "End Primitive Recipe Declarations") ABANDON, :(before "End Primitive Recipe Numbers") Recipe_ordinal["abandon"] = ABANDON; :(before "End Primitive Recipe Implementations") case ABANDON: { if (SIZE(ingredients) != 1) { raise << current_recipe_name() << ": 'abandon' requires one ingredient, but got '" << current_instruction().to_string() << "'\n" << end(); break; } if (!scalar(ingredients.at(0))) { raise << current_recipe_name() << ": first ingredient of 'abandon' should be an address, but got " << current_instruction().ingredients.at(0).original_string << '\n' << end(); break; } long long int address = ingredients.at(0).at(0); reagent types = canonize(current_instruction().ingredients.at(0)); if (types.types.empty() || types.types.at(0) != Type_ordinal["address"]) { raise << current_recipe_name() << ": first ingredient of 'abandon' should be an address, but got " << current_instruction().ingredients.at(0).original_string << '\n' << end(); break; } reagent target_type = lookup_memory(types); abandon(address, size_of(target_type)); break; } :(code) void abandon(long long int address, long long int size) { //? Total_free += size; //? Num_free++; //? cerr << "abandon: " << size << '\n'; // clear memory for (long long int curr = address; curr < address+size; ++curr) Memory[curr] = 0; // append existing free list to address Memory[address] = Free_list[size]; Free_list[size] = address; } :(before "ensure_space(size)" following "case NEW") if (Free_list[size]) { long long int result = Free_list[size]; Free_list[size] = Memory[result]; for (long long int curr = result+1; curr < result+size; ++curr) { if (Memory[curr] != 0) { raise << current_recipe_name() << ": memory in free list was not zeroed out: " << curr << '/' << result << "; somebody wrote to us after free!!!\n" << end(); break; // always fatal } } if (SIZE(current_instruction().ingredients) > 1) Memory[result] = array_length; else Memory[result] = 0; products.resize(1); products.at(0).push_back(result); break; } :(scenario new_differing_size_no_reclaim) recipe main [ 1:address:number <- new number:type abandon 1:address:number 2:address:number <- new number:type, 2 # different size 3:boolean <- equal 1:address:number, 2:address:number ] # no reuse +mem: storing 0 in location 3 :(scenario new_reclaim_array) recipe main [ 1:address:array:number <- new number:type, 2 abandon 1:address:array:number 2:address:array:number <- new number:type, 2 3:boolean <- equal 1:address:array:number, 2:address:array:number ] # reuse +mem: storing 1 in location 3 //:: Next, extend 'new' to handle a unicode string literal argument. :(scenario new_string) recipe main [ 1:address:array:character <- new [abc def] 2:character <- index *1:address:array:character, 5 ] # number code for 'e' +mem: storing 101 in location 2 :(scenario new_string_handles_unicode) recipe main [ 1:address:array:character <- new [a«c] 2:number <- length *1:address:array:character 3:character <- index *1:address:array:character, 1 ] +mem: storing 3 in location 2 # unicode for '«' +mem: storing 171 in location 3 :(before "End NEW Transform Special-cases") if (!inst.ingredients.empty() && !inst.ingredients.at(0).properties.empty() && !inst.ingredients.at(0).properties.at(0).second.empty() && inst.ingredients.at(0).properties.at(0).second.at(0) == "literal-string") { // skip transform inst.ingredients.at(0).initialized = true; goto end_new_transform; } :(after "case NEW" following "Primitive Recipe Implementations") if (is_literal(current_instruction().ingredients.at(0)) && current_instruction().ingredients.at(0).properties.at(0).second.at(0) == "literal-string") { products.resize(1); products.at(0).push_back(new_mu_string(current_instruction().ingredients.at(0).name)); break; } :(code) long long int new_mu_string(const string& contents) { // allocate an array just large enough for it long long int string_length = unicode_length(contents); //? Total_alloc += string_length+1; //? Num_alloc++; ensure_space(string_length+1); // don't forget the extra location for array size // initialize string long long int result = Current_routine->alloc; Memory[Current_routine->alloc++] = string_length; long long int curr = 0; const char* raw_contents = contents.c_str(); for (long long int i = 0; i < string_length; ++i) { uint32_t curr_character; assert(curr < SIZE(contents)); tb_utf8_char_to_unicode(&curr_character, &raw_contents[curr]); Memory[Current_routine->alloc] = curr_character; curr += tb_utf8_char_length(raw_contents[curr]); ++Current_routine->alloc; } // mu strings are not null-terminated in memory return result; } //: pass in commandline args as ingredients to main //: todo: test this :(after "Update main_routine") Current_routine = main_routine; for (long long int i = 1; i < argc; ++i) { vector arg; arg.push_back(new_mu_string(argv[i])); Current_routine->calls.front().ingredient_atoms.push_back(arg); } //: stash recognizes strings :(scenario stash_string) recipe main [ x:address:array:character <- new [abc] stash [foo:], x:address:array:character ] +app: foo: abc :(before "End print Special-cases(reagent r, data)") if (is_mu_string(r)) { assert(scalar(data)); return read_mu_string(data.at(0)); } :(scenario unicode_string) recipe main [ x:address:array:character <- new [♠] stash [foo:], x:address:array:character ] +app: foo: ♠ //: Allocate more to routine when initializing a literal string :(scenario new_string_overflow) % Initial_memory_per_routine = 2; recipe main [ 1:address:number/raw <- new number:type 2:address:array:character/raw <- new [a] # not enough room in initial page, if you take the array size into account ] +new: routine allocated memory from 1000 to 1002 +new: routine allocated memory from 1002 to 1004 //: helpers :(code) long long int unicode_length(const string& s) { const char* in = s.c_str(); long long int result = 0; long long int curr = 0; while (curr < SIZE(s)) { // carefully bounds-check on the string // before accessing its raw pointer ++result; curr += tb_utf8_char_length(in[curr]); } return result; } bool is_mu_string(const reagent& x) { return SIZE(x.types) == 3 && x.types.at(0) == Type_ordinal["address"] && x.types.at(1) == Type_ordinal["array"] && x.types.at(2) == Type_ordinal["character"]; } string read_mu_string(long long int address) { long long int size = Memory[address]; if (size == 0) return ""; ostringstream tmp; for (long long int curr = address+1; curr <= address+size; ++curr) { tmp << to_unicode(static_cast(Memory[curr])); } return tmp.str(); }