//: Writing to a literal (not computed) address of 0 in a recipe chains two //: spaces together. When a variable has a property of /space:1, it looks up //: the variable in the chained/surrounding space. /space:2 looks up the //: surrounding space of the surrounding space, etc. :(scenario closure) recipe main [ default-space:address:array:location <- new location:type, 30 1:address:array:location/names:new-counter <- new-counter 2:number/raw <- increment-counter 1:address:array:location/names:new-counter 3:number/raw <- increment-counter 1:address:array:location/names:new-counter ] recipe new-counter [ default-space:address:array:location <- new location:type, 30 x:number <- copy 23 y:number <- copy 3 # variable that will be incremented reply default-space:address:array:location ] recipe increment-counter [ default-space:address:array:location <- new location:type, 30 0:address:array:location/names:new-counter <- next-ingredient # outer space must be created by 'new-counter' above y:number/space:1 <- add y:number/space:1, 1 # increment y:number <- copy 234 # dummy reply y:number/space:1 ] +name: recipe increment-counter is surrounded by new-counter +mem: storing 5 in location 3 //: To make this work, compute the recipe that provides names for the //: surrounding space of each recipe. This must happen before transform_names. :(before "End Globals") map Surrounding_space; :(after "int main") Transform.push_back(collect_surrounding_spaces); :(code) void collect_surrounding_spaces(const recipe_ordinal r) { for (long long int i = 0; i < SIZE(Recipe[r].steps); ++i) { const instruction& inst = Recipe[r].steps.at(i); if (inst.is_label) continue; for (long long int j = 0; j < SIZE(inst.products); ++j) { if (is_literal(inst.products.at(j))) continue; if (inst.products.at(j).name != "0") continue; type_tree* type = inst.products.at(j).type; if (!type || type->value != Type_ordinal["address"] || !type->right || type->right->value != Type_ordinal["array"] || !type->right->right || type->right->right->value != Type_ordinal["location"] || type->right->right->right) { raise_error << "slot 0 should always have type address:array:location, but is " << inst.products.at(j).to_string() << '\n' << end(); continue; } vector s = property(inst.products.at(j), "names"); if (s.empty()) { raise_error << "slot 0 requires a /names property in recipe " << Recipe[r].name << end(); continue; } if (SIZE(s) > 1) raise_error << "slot 0 should have a single value in /names, but got " << inst.products.at(j).to_string() << '\n' << end(); string surrounding_recipe_name = s.at(0); if (Surrounding_space.find(r) != Surrounding_space.end() && Surrounding_space[r] != Recipe_ordinal[surrounding_recipe_name]) { raise_error << "recipe " << Recipe[r].name << " can have only one 'surrounding' recipe but has " << Recipe[Surrounding_space[r]].name << " and " << surrounding_recipe_name << '\n' << end(); continue; } trace("name") << "recipe " << Recipe[r].name << " is surrounded by " << surrounding_recipe_name << end(); Surrounding_space[r] = Recipe_ordinal[surrounding_recipe_name]; } } } //: Once surrounding spaces are available, transform_names uses them to handle //: /space properties. :(replace{} "long long int lookup_name(const reagent& r, const recipe_ordinal default_recipe)") long long int lookup_name(const reagent& x, const recipe_ordinal default_recipe) { if (!has_property(x, "space")) { if (Name[default_recipe].empty()) raise_error << "name not found: " << x.name << '\n' << end(); return Name[default_recipe][x.name]; } vector p = property(x, "space"); if (SIZE(p) != 1) raise_error << "/space property should have exactly one (non-negative integer) value\n" << end(); long long int n = to_integer(p.at(0)); assert(n >= 0); recipe_ordinal surrounding_recipe = lookup_surrounding_recipe(default_recipe, n); set done; vector path; return lookup_name(x, surrounding_recipe, done, path); } // If the recipe we need to lookup this name in doesn't have names done yet, // recursively call transform_names on it. long long int lookup_name(const reagent& x, const recipe_ordinal r, set& done, vector& path) { if (!Name[r].empty()) return Name[r][x.name]; if (done.find(r) != done.end()) { raise_error << "can't compute address of " << x.to_string() << " because " << end(); for (long long int i = 1; i < SIZE(path); ++i) { raise_error << path.at(i-1) << " requires computing names of " << path.at(i) << '\n' << end(); } raise_error << path.at(SIZE(path)-1) << " requires computing names of " << r << "..ad infinitum\n" << end(); return 0; } done.insert(r); path.push_back(r); transform_names(r); // Not passing 'done' through. Might this somehow cause an infinite loop? assert(!Name[r].empty()); return Name[r][x.name]; } recipe_ordinal lookup_surrounding_recipe(const recipe_ordinal r, long long int n) { if (n == 0) return r; if (Surrounding_space.find(r) == Surrounding_space.end()) { raise_error << "don't know surrounding recipe of " << Recipe[r].name << '\n' << end(); return 0; } assert(Surrounding_space[r]); return lookup_surrounding_recipe(Surrounding_space[r], n-1); } //: weaken use-before-set detection just a tad :(replace{} "bool already_transformed(const reagent& r, const map& names)") bool already_transformed(const reagent& r, const map& names) { if (has_property(r, "space")) { vector p = property(r, "space"); if (SIZE(p) != 1) { raise_error << "/space property should have exactly one (non-negative integer) value in " << r.original_string << '\n' << end(); return false; } if (p.at(0) != "0") return true; } return names.find(r.name) != names.end(); }