//: Transform to maintain multiple variants of a recipe depending on the //: number and types of the ingredients and products. Allows us to use nice //: names like 'print' or 'length' in many mutually extensible ways. void test_static_dispatch() { run( "def main [\n" " 7:num/raw <- test 3\n" "]\n" "def test a:num -> z:num [\n" " z <- copy 1\n" "]\n" "def test a:num, b:num -> z:num [\n" " z <- copy 2\n" "]\n" ); CHECK_TRACE_CONTENTS( "mem: storing 1 in location 7\n" ); } //: When loading recipes, accumulate variants if headers don't collide, and //: flag an error if headers collide. :(before "End Globals") map<string, vector<recipe_ordinal> > Recipe_variants; :(before "End One-time Setup") put(Recipe_variants, "main", vector<recipe_ordinal>()); // since we manually added main to Recipe_ordinal :(before "End Globals") map<string, vector<recipe_ordinal> > Recipe_variants_snapshot; :(before "End save_snapshots") Recipe_variants_snapshot = Recipe_variants; :(before "End restore_snapshots") Recipe_variants = Recipe_variants_snapshot; :(before "End Load Recipe Header(result)") // there can only ever be one variant for main if (result.name != "main" && contains_key(Recipe_ordinal, result.name)) { const recipe_ordinal r = get(Recipe_ordinal, result.name); if (!contains_key(Recipe, r) || get(Recipe, r).has_header) { string new_name = matching_variant_name(result); if (new_name.empty()) { // variant doesn't already exist new_name = next_unused_recipe_name(result.name); put(Recipe_ordinal, new_name, Next_recipe_ordinal++); get_or_insert(Recipe_variants, result.name).push_back(get(Recipe_ordinal, new_name)); } trace(101, "load") << "switching " << result.name << " to " << new_name << end(); result.name = new_name; result.is_autogenerated = true; } } else { // save first variant put(Recipe_ordinal, result.name, Next_recipe_ordinal++); get_or_insert(Recipe_variants, result.name).push_back(get(Recipe_ordinal, result.name)); } :(code) string matching_variant_name(const recipe& rr) { const vector<recipe_ordinal>& variants = get_or_insert(Recipe_variants, rr.name); for (int i = 0; i < SIZE(variants); ++i) { if (!contains_key(Recipe, variants.at(i))) continue; const recipe& candidate = get(Recipe, variants.at(i)); if (!all_reagents_match(rr, candidate)) continue; return candidate.name; } return ""; } bool all_reagents_match(const recipe& r1, const recipe& r2) { if (SIZE(r1.ingredients) != SIZE(r2.ingredients)) return false; if (SIZE(r1.products) != SIZE(r2.products)) return false; for (int i = 0; i < SIZE(r1.ingredients); ++i) { expand_type_abbreviations(r1.ingredients.at(i).type); expand_type_abbreviations(r2.ingredients.at(i).type); if (!deeply_equal_type_names(r1.ingredients.at(i), r2.ingredients.at(i))) return false; } for (int i = 0; i < SIZE(r1.products); ++i) { expand_type_abbreviations(r1.products.at(i).type); expand_type_abbreviations(r2.products.at(i).type); if (!deeply_equal_type_names(r1.products.at(i), r2.products.at(i))) return false; } return true; } :(before "End Globals") set<string> Literal_type_names; :(before "End One-time Setup") Literal_type_names.insert("number"); Literal_type_names.insert("character"); :(code) bool deeply_equal_type_names(const reagent& a, const reagent& b) { return deeply_equal_type_names(a.type, b.type); } bool deeply_equal_type_names(const type_tree* a, const type_tree* b) { if (!a) return !b; if (!b) return !a; if (a->atom != b->atom) return false; if (a->atom) { if (a->name == "literal" && b->name == "literal") return true; if (a->name == "literal") return Literal_type_names.find(b->name) != Literal_type_names.end(); if (b->name == "literal") return Literal_type_names.find(a->name) != Literal_type_names.end(); return a->name == b->name; } return deeply_equal_type_names(a->left, b->left) && deeply_equal_type_names(a->right, b->right); } string next_unused_recipe_name(const string& recipe_name) { for (int i = 2; /*forever*/; ++i) { ostringstream out; out << recipe_name << '_' << i; if (!contains_key(Recipe_ordinal, out.str())) return out.str(); } } //: Once all the recipes are loaded, transform their bodies to replace each //: call with the most suitable variant. void test_static_dispatch_picks_most_similar_variant() { run( "def main [\n" " 7:num/raw <- test 3, 4, 5\n" "]\n" "def test a:num -> z:num [\n" " z <- copy 1\n" "]\n" "def test a:num, b:num -> z:num [\n" " z <- copy 2\n" "]\n" ); CHECK_TRACE_CONTENTS( "mem: storing 2 in location 7\n" ); } //: support recipe headers in a previous transform to fill in missing types :(before "End check_or_set_invalid_types") for (int i = 0; i < SIZE(caller.ingredients); ++i) check_or_set_invalid_types(caller.ingredients.at(i).type, maybe(caller.name), "recipe header ingredient"); for (int i = 0; i < SIZE(caller.products); ++i) check_or_set_invalid_types(caller.products.at(i).type, maybe(caller.name), "recipe header product"); //: save original name of recipes before renaming them :(before "End recipe Fields") string original_name; //: original name is only set during load :(before "End Load Recipe Name") result.original_name = result.name; //: after filling in all missing types (because we'll be introducing 'blank' types in this transform in a later layer, for shape-shifting recipes) :(after "Transform.push_back(transform_names)") Transform.push_back(resolve_ambiguous_calls); // idempotent //: In a later layer we'll introduce recursion in resolve_ambiguous_calls, by //: having it generate code for shape-shifting recipes and then transform such //: code. This data structure will help error messages be more useful. //: //: We're punning the 'call' data structure just because it has slots for //: calling recipe and calling instruction. :(before "End Globals") list<call> Resolve_stack; :(code) void resolve_ambiguous_calls(const recipe_ordinal r) { recipe& caller_recipe = get(Recipe, r); trace(101, "transform") << "--- resolve ambiguous calls for recipe " << caller_recipe.name << end(); for (int index = 0; index < SIZE(caller_recipe.steps); ++index) { instruction& inst = caller_recipe.steps.at(index); if (inst.is_label) continue; resolve_ambiguous_call(r, index, inst, caller_recipe); } } void resolve_ambiguous_call(const recipe_ordinal r, int index, instruction& inst, const recipe& caller_recipe) { // End resolve_ambiguous_call(r, index, inst, caller_recipe) Special-cases if (non_ghost_size(get_or_insert(Recipe_variants, inst.name)) == 0) return; trace(102, "transform") << "instruction " << to_original_string(inst) << end(); Resolve_stack.push_front(call(r, index)); string new_name = best_variant(inst, caller_recipe); if (!new_name.empty()) inst.name = new_name; assert(Resolve_stack.front().running_recipe == r); assert(Resolve_stack.front().running_step_index == index); Resolve_stack.pop_front(); } string best_variant(const instruction& inst, const recipe& caller_recipe) { const vector<recipe_ordinal>& variants = get(Recipe_variants, inst.name); vector<recipe_ordinal> candidates; // Static Dispatch Phase 1 //? cerr << inst.name << " phase 1\n"; candidates = strictly_matching_variants(inst, variants); if (!candidates.empty()) return best_variant(inst, candidates).name; //? cerr << inst.name << " phase 3\n"; // Static Dispatch Phase 2 //: (shape-shifting recipes in a later layer) // End Static Dispatch Phase 2 // Static Dispatch Phase 3 //? cerr << inst.name << " phase 4\n"; candidates = matching_variants(inst, variants); if (!candidates.empty()) return best_variant(inst, candidates).name; // error messages if (!is_primitive(get(Recipe_ordinal, inst.name))) { // we currently don't check types for primitive variants if (SIZE(variants) == 1) { raise << maybe(caller_recipe.name) << "types don't match in call for '" << to_original_string(inst) << "'\n" << end(); raise << " which tries to call '" << original_header_label(get(Recipe, variants.at(0))) << "'\n" << end(); } else { raise << maybe(caller_recipe.name) << "failed to find a matching call for '" << to_original_string(inst) << "'\n" << end(); raise << " available variants are:\n" << end(); for (int i = 0; i < SIZE(variants); ++i) raise << " " << original_header_label(get(Recipe, variants.at(i))) << '\n' << end(); } for (list<call>::iterator p = /*skip*/++Resolve_stack.begin(); p != Resolve_stack.end(); ++p) { const recipe& specializer_recipe = get(Recipe, p->running_recipe); const instruction& specializer_inst = specializer_recipe.steps.at(p->running_step_index); if (specializer_recipe.name != "interactive") raise << " (from '" << to_original_string(specializer_inst) << "' in " << specializer_recipe.name << ")\n" << end(); else raise << " (from '" << to_original_string(specializer_inst) << "')\n" << end(); // One special-case to help with the rewrite_stash transform. (cross-layer) if (specializer_inst.products.at(0).name.find("stash_") == 0) { instruction stash_inst; if (next_stash(*p, &stash_inst)) { if (specializer_recipe.name != "interactive") raise << " (part of '" << to_original_string(stash_inst) << "' in " << specializer_recipe.name << ")\n" << end(); else raise << " (part of '" << to_original_string(stash_inst) << "')\n" << end(); } } } } return ""; } // phase 1 vector<recipe_ordinal> strictly_matching_variants(const instruction& inst, const vector<recipe_ordinal>& variants) { vector<recipe_ordinal> result; for (int i = 0; i < SIZE(variants); ++i) { if (variants.at(i) == -1) continue; trace(102, "transform") << "checking variant (strict) " << i << ": " << header_label(variants.at(i)) << end(); if (all_header_reagents_strictly_match(inst, get(Recipe, variants.at(i)))) result.push_back(variants.at(i)); } return result; } bool all_header_reagents_strictly_match(const instruction& inst, const recipe& variant) { for (int i = 0; i < min(SIZE(inst.ingredients), SIZE(variant.ingredients)); ++i) { if (!types_strictly_match(variant.ingredients.at(i), inst.ingredients.at(i))) { trace(103, "transform") << "strict match failed: ingredient " << i << end(); return false; } } for (int i = 0; i < min(SIZE(inst.products), SIZE(variant.products)); ++i) { if (is_dummy(inst.products.at(i))) continue; if (!types_strictly_match(variant.products.at(i), inst.products.at(i))) { trace(103, "transform") << "strict match failed: product " << i << end(); return false; } } return true; } // phase 3 vector<recipe_ordinal> matching_variants(const instruction& inst, const vector<recipe_ordinal>& variants) { vector<recipe_ordinal> result; for (int i = 0; i < SIZE(variants); ++i) { if (variants.at(i) == -1) continue; trace(102, "transform") << "checking variant " << i << ": " << header_label(variants.at(i)) << end(); if (all_header_reagents_match(inst, get(Recipe, variants.at(i)))) result.push_back(variants.at(i)); } return result; } bool all_header_reagents_match(const instruction& inst, const recipe& variant) { for (int i = 0; i < min(SIZE(inst.ingredients), SIZE(variant.ingredients)); ++i) { if (!types_match(variant.ingredients.at(i), inst.ingredients.at(i))) { trace(103, "transform") << "match failed: ingredient " << i << end(); return false; } } for (int i = 0; i < min(SIZE(variant.products), SIZE(inst.products)); ++i) { if (is_dummy(inst.products.at(i))) continue; if (!types_match(variant.products.at(i), inst.products.at(i))) { trace(103, "transform") << "match failed: product " << i << end(); return false; } } return true; } // tie-breaker for each phase const recipe& best_variant(const instruction& inst, vector<recipe_ordinal>& candidates) { assert(!candidates.empty()); if (SIZE(candidates) == 1) return get(Recipe, candidates.at(0)); int min_score = 999; int min_index = 0; for (int i = 0; i < SIZE(candidates); ++i) { const recipe& candidate = get(Recipe, candidates.at(i)); // prefer variants without extra or missing ingredients or products int score = abs(SIZE(candidate.products)-SIZE(inst.products)) + abs(SIZE(candidate.ingredients)-SIZE(inst.ingredients)); // prefer variants with non-address ingredients or products for (int j = 0; j < SIZE(candidate.ingredients); ++j) { if (is_mu_address(candidate.ingredients.at(j))) ++score; } for (int j = 0; j < SIZE(candidate.products); ++j) { if (is_mu_address(candidate.products.at(j))) ++score; } assert(score < 999); if (score < min_score) { min_score = score; min_index = i; } } return get(Recipe, candidates.at(min_index)); } int non_ghost_size(vector<recipe_ordinal>& variants) { int result = 0; for (int i = 0; i < SIZE(variants); ++i) if (variants.at(i) != -1) ++result; return result; } bool next_stash(const call& c, instruction* stash_inst) { const recipe& specializer_recipe = get(Recipe, c.running_recipe); int index = c.running_step_index; for (++index; index < SIZE(specializer_recipe.steps); ++index) { const instruction& inst = specializer_recipe.steps.at(index); if (inst.name == "stash") { *stash_inst = inst; return true; } } return false; } void test_static_dispatch_disabled_in_recipe_without_variants() { run( "def main [\n" " 1:num <- test 3\n" "]\n" "def test [\n" " 2:num <- next-ingredient # ensure no header\n" " return 34\n" "]\n" ); CHECK_TRACE_CONTENTS( "mem: storing 34 in location 1\n" ); } void test_static_dispatch_disabled_on_headerless_definition() { Hide_errors = true; run( "def test a:num -> z:num [\n" " z <- copy 1\n" "]\n" "def test [\n" " return 34\n" "]\n" ); CHECK_TRACE_CONTENTS( "error: redefining recipe test\n" ); } void test_static_dispatch_disabled_on_headerless_definition_2() { Hide_errors = true; run( "def test [\n" " return 34\n" "]\n" "def test a:num -> z:num [\n" " z <- copy 1\n" "]\n" ); CHECK_TRACE_CONTENTS( "error: redefining recipe test\n" ); } void test_static_dispatch_on_primitive_names() { run( "def main [\n" " 1:num <- copy 34\n" " 2:num <- copy 34\n" " 3:bool <- equal 1:num, 2:num\n" " 4:bool <- copy false\n" " 5:bool <- copy false\n" " 6:bool <- equal 4:bool, 5:bool\n" "]\n" // temporarily hardcode number equality to always fail "def equal x:num, y:num -> z:bool [\n" " local-scope\n" " load-ingredients\n" " z <- copy false\n" "]\n" "# comparing numbers used overload\n" ); CHECK_TRACE_CONTENTS( // comparing numbers used overload "mem: storing 0 in location 3\n" // comparing booleans continues to use primitive "mem: storing 1 in location 6\n" ); } void test_static_dispatch_works_with_dummy_results_for_containers() { run( "def main [\n" " _ <- test 3, 4\n" "]\n" "def test a:num -> z:point [\n" " local-scope\n" " load-ingredients\n" " z <- merge a, 0\n" "]\n" "def test a:num, b:num -> z:point [\n" " local-scope\n" " load-ingredients\n" " z <- merge a, b\n" "]\n" ); CHECK_TRACE_COUNT("error", 0); } void test_static_dispatch_works_with_compound_type_containing_container_defined_after_first_use() { run( "def main [\n" " x:&:foo <- new foo:type\n" " test x\n" "]\n" "container foo [\n" " x:num\n" "]\n" "def test a:&:foo -> z:num [\n" " local-scope\n" " load-ingredients\n" " z:num <- get *a, x:offset\n" "]\n" ); CHECK_TRACE_COUNT("error", 0); } void test_static_dispatch_works_with_compound_type_containing_container_defined_after_second_use() { run( "def main [\n" " x:&:foo <- new foo:type\n" " test x\n" "]\n" "def test a:&:foo -> z:num [\n" " local-scope\n" " load-ingredients\n" " z:num <- get *a, x:offset\n" "]\n" "container foo [\n" " x:num\n" "]\n" ); CHECK_TRACE_COUNT("error", 0); } void test_static_dispatch_on_non_literal_character_ignores_variant_with_numbers() { Hide_errors = true; run( "def main [\n" " local-scope\n" " x:char <- copy 10/newline\n" " 1:num/raw <- foo x\n" "]\n" "def foo x:num -> y:num [\n" " load-ingredients\n" " return 34\n" "]\n" ); CHECK_TRACE_CONTENTS( "error: main: ingredient 0 has the wrong type at '1:num/raw <- foo x'\n" ); CHECK_TRACE_DOESNT_CONTAIN("mem: storing 34 in location 1"); } void test_static_dispatch_dispatches_literal_to_character() { run( "def main [\n" " 1:num/raw <- foo 97\n" "]\n" "def foo x:char -> y:num [\n" " local-scope\n" " load-ingredients\n" " return 34\n" "]\n" "# character variant is preferred\n" ); CHECK_TRACE_CONTENTS( "mem: storing 34 in location 1\n" ); } void test_static_dispatch_dispatches_literal_to_number_if_at_all_possible() { run( "def main [\n" " 1:num/raw <- foo 97\n" "]\n" "def foo x:char -> y:num [\n" " local-scope\n" " load-ingredients\n" " return 34\n" "]\n" "def foo x:num -> y:num [\n" " local-scope\n" " load-ingredients\n" " return 35\n" "]\n" ); CHECK_TRACE_CONTENTS( // number variant is preferred "mem: storing 35 in location 1\n" ); } :(replace{} "string header_label(const recipe_ordinal r)") string header_label(const recipe_ordinal r) { return header_label(get(Recipe, r)); } :(code) string header_label(const recipe& caller) { ostringstream out; out << "recipe " << caller.name; for (int i = 0; i < SIZE(caller.ingredients); ++i) out << ' ' << to_string(caller.ingredients.at(i)); if (!caller.products.empty()) out << " ->"; for (int i = 0; i < SIZE(caller.products); ++i) out << ' ' << to_string(caller.products.at(i)); return out.str(); } string original_header_label(const recipe& caller) { ostringstream out; out << "recipe " << caller.original_name; for (int i = 0; i < SIZE(caller.ingredients); ++i) out << ' ' << caller.ingredients.at(i).original_string; if (!caller.products.empty()) out << " ->"; for (int i = 0; i < SIZE(caller.products); ++i) out << ' ' << caller.products.at(i).original_string; return out.str(); } void test_reload_variant_retains_other_variants() { run( "def main [\n" " 1:num <- copy 34\n" " 2:num <- foo 1:num\n" "]\n" "def foo x:num -> y:num [\n" " local-scope\n" " load-ingredients\n" " return 34\n" "]\n" "def foo x:&:num -> y:num [\n" " local-scope\n" " load-ingredients\n" " return 35\n" "]\n" "def! foo x:&:num -> y:num [\n" " local-scope\n" " load-ingredients\n" " return 36\n" "]\n" ); CHECK_TRACE_CONTENTS( "mem: storing 34 in location 2\n" ); CHECK_TRACE_COUNT("error", 0); } void test_dispatch_errors_come_after_unknown_name_errors() { Hide_errors = true; run( "def main [\n" " y:num <- foo x\n" "]\n" "def foo a:num -> b:num [\n" " local-scope\n" " load-ingredients\n" " return 34\n" "]\n" "def foo a:bool -> b:num [\n" " local-scope\n" " load-ingredients\n" " return 35\n" "]\n" ); CHECK_TRACE_CONTENTS( "error: main: missing type for 'x' in 'y:num <- foo x'\n" "error: main: failed to find a matching call for 'y:num <- foo x'\n" ); } void test_override_methods_with_type_abbreviations() { run( "def main [\n" " local-scope\n" " s:text <- new [abc]\n" " 1:num/raw <- foo s\n" "]\n" "def foo a:address:array:character -> result:number [\n" " return 34\n" "]\n" // identical to previous variant once you take type abbreviations into account "def! foo a:text -> result:num [\n" " return 35\n" "]\n" ); CHECK_TRACE_CONTENTS( "mem: storing 35 in location 1\n" ); } void test_ignore_static_dispatch_in_type_errors_without_overloading() { Hide_errors = true; run( "def main [\n" " local-scope\n" " x:&:num <- copy 0\n" " foo x\n" "]\n" "def foo x:&:char [\n" " local-scope\n" " load-ingredients\n" "]\n" ); CHECK_TRACE_CONTENTS( "error: main: types don't match in call for 'foo x'\n" "error: which tries to call 'recipe foo x:&:char'\n" ); } void test_show_available_variants_in_dispatch_errors() { Hide_errors = true; run( "def main [\n" " local-scope\n" " x:&:num <- copy 0\n" " foo x\n" "]\n" "def foo x:&:char [\n" " local-scope\n" " load-ingredients\n" "]\n" "def foo x:&:bool [\n" " local-scope\n" " load-ingredients\n" "]\n" ); CHECK_TRACE_CONTENTS( "error: main: failed to find a matching call for 'foo x'\n" "error: available variants are:\n" "error: recipe foo x:&:char\n" "error: recipe foo x:&:bool\n" ); } :(before "End Includes") using std::abs;