//:: Like container definitions, recipes too can contain type parameters. :(scenario shape_shifting_recipe) def main [ 10:point <- merge 14, 15 11:point <- foo 10:point ] # non-matching variant def foo a:number -> result:number [ local-scope load-ingredients result <- copy 34 ] # matching shape-shifting variant def foo a:_t -> result:_t [ local-scope load-ingredients result <- copy a ] +mem: storing 14 in location 11 +mem: storing 15 in location 12 //: Before anything else, disable transforms for shape-shifting recipes and //: make sure we never try to actually run a shape-shifting recipe. We should //: be rewriting such instructions to *specializations* with the type //: ingredients filled in. :(before "End Transform Checks") if (any_type_ingredient_in_header(/*recipe_ordinal*/p->first)) continue; :(after "Running One Instruction") if (Current_routine->calls.front().running_step_index == 0 && any_type_ingredient_in_header(Current_routine->calls.front().running_recipe)) { //? DUMP(""); raise << "ran into unspecialized shape-shifting recipe " << current_recipe_name() << '\n' << end(); //? exit(0); } //: Make sure we don't match up literals with type ingredients without //: specialization. :(before "End Matching Types For Literal(to)") if (contains_type_ingredient_name(to)) return false; //: We'll be creating recipes without loading them from anywhere by //: *specializing* existing recipes. //: //: Keep track of these new recipes in a separate variable in addition to //: Recently_added_recipes, so that edit/ can clear them before reloading to //: regenerate errors. :(before "End Globals") vector Recently_added_shape_shifting_recipes; :(before "End Setup") Recently_added_shape_shifting_recipes.clear(); //: make sure we don't clear any of these recipes when we start running tests :(before "End Loading .mu Files") Recently_added_recipes.clear(); Recently_added_types.clear(); Recently_added_shape_shifting_recipes.clear(); //: save original name of specialized recipes :(before "End recipe Fields") string original_name; //: original name is only set during load :(before "End Load Recipe Name") result.original_name = result.name; :(after "Static Dispatch Phase 2") candidates = strictly_matching_shape_shifting_variants(inst, variants); if (!candidates.empty()) { recipe_ordinal exemplar = best_shape_shifting_variant(inst, candidates); trace(9992, "transform") << "found variant to specialize: " << exemplar << ' ' << get(Recipe, exemplar).name << end(); recipe_ordinal new_recipe_ordinal = new_variant(exemplar, inst, caller_recipe); if (new_recipe_ordinal == 0) goto skip_shape_shifting_variants; variants.push_back(new_recipe_ordinal); // side-effect recipe& variant = get(Recipe, new_recipe_ordinal); // perform all transforms on the new specialization if (!variant.steps.empty()) { trace(9992, "transform") << "transforming new specialization: " << variant.name << end(); for (int t = 0; t < SIZE(Transform); ++t) { (*Transform.at(t))(new_recipe_ordinal); } } variant.transformed_until = SIZE(Transform)-1; trace(9992, "transform") << "new specialization: " << variant.name << end(); return variant.name; } skip_shape_shifting_variants:; //: make sure we have no unspecialized shape-shifting recipes being called //: before running mu programs :(before "End Instruction Operation Checks") if (contains_key(Recipe, inst.operation) && inst.operation >= MAX_PRIMITIVE_RECIPES && any_type_ingredient_in_header(inst.operation)) { raise << maybe(caller.name) << "instruction " << inst.name << " has no valid specialization\n" << end(); return; } :(code) // phase 2 of static dispatch vector strictly_matching_shape_shifting_variants(const instruction& inst, vector& variants) { vector result; for (int i = 0; i < SIZE(variants); ++i) { if (variants.at(i) == -1) continue; if (!any_type_ingredient_in_header(variants.at(i))) continue; if (all_concrete_header_reagents_strictly_match(inst, get(Recipe, variants.at(i)))) result.push_back(variants.at(i)); } return result; } bool all_concrete_header_reagents_strictly_match(const instruction& inst, const recipe& variant) { if (SIZE(inst.ingredients) < SIZE(variant.ingredients)) { trace(9993, "transform") << "too few ingredients" << end(); return false; } if (SIZE(variant.products) < SIZE(inst.products)) { trace(9993, "transform") << "too few products" << end(); return false; } for (int i = 0; i < SIZE(variant.ingredients); ++i) { if (!concrete_type_names_strictly_match(variant.ingredients.at(i), inst.ingredients.at(i))) { trace(9993, "transform") << "concrete-type match failed: ingredient " << i << end(); return false; } } for (int i = 0; i < SIZE(inst.products); ++i) { if (is_dummy(inst.products.at(i))) continue; if (!concrete_type_names_strictly_match(variant.products.at(i), inst.products.at(i))) { trace(9993, "transform") << "strict match failed: product " << i << end(); return false; } } return true; } // tie-breaker for phase 2 recipe_ordinal best_shape_shifting_variant(const instruction& inst, vector& candidates) { assert(!candidates.empty()); // primary score int max_score = -1; for (int i = 0; i < SIZE(candidates); ++i) { int score = number_of_concrete_type_names(candidates.at(i)); assert(score > -1); if (score > max_score) max_score = score; } // break any ties at max_score by a secondary score int min_score2 = 999; int best_index = 0; for (int i = 0; i < SIZE(candidates); ++i) { int score1 = number_of_concrete_type_names(candidates.at(i)); assert(score1 <= max_score); if (score1 != max_score) continue; const recipe& candidate = get(Recipe, candidates.at(i)); int score2 = (SIZE(candidate.products)-SIZE(inst.products)) + (SIZE(inst.ingredients)-SIZE(candidate.ingredients)); assert(score2 < 999); if (score2 < min_score2) { min_score2 = score2; best_index = i; } } return candidates.at(best_index); } bool any_type_ingredient_in_header(recipe_ordinal variant) { const recipe& caller = get(Recipe, variant); for (int i = 0; i < SIZE(caller.ingredients); ++i) { if (contains_type_ingredient_name(caller.ingredients.at(i))) return true; } for (int i = 0; i < SIZE(caller.products); ++i) { if (contains_type_ingredient_name(caller.products.at(i))) return true; } return false; } bool concrete_type_names_strictly_match(reagent to, reagent from) { canonize_type(to); canonize_type(from); return concrete_type_names_strictly_match(to.type, from.type, from); } int number_of_concrete_type_names(recipe_ordinal r) { const recipe& caller = get(Recipe, r); int result = 0; for (int i = 0; i < SIZE(caller.ingredients); ++i) result += number_of_concrete_type_names(caller.ingredients.at(i)); for (int i = 0; i < SIZE(caller.products); ++i) result += number_of_concrete_type_names(caller.products.at(i)); return result; } int number_of_concrete_type_names(const reagent& r) { return number_of_concrete_type_names(r.type); } int number_of_concrete_type_names(const type_tree* type) { if (!type) return 0; int result = 0; if (!type->name.empty() && !is_type_ingredient_name(type->name)) result++; result += number_of_concrete_type_names(type->left); result += number_of_concrete_type_names(type->right); return result; } bool concrete_type_names_strictly_match(const type_tree* to, const type_tree* from, const reagent& rhs_reagent) { if (!to) return !from; if (!from) return !to; if (is_type_ingredient_name(to->name)) return true; // type ingredient matches anything if (to->name == "literal" && from->name == "literal") return true; if (to->name == "literal" && Literal_type_names.find(from->name) != Literal_type_names.end()) return true; if (from->name == "literal" && Literal_type_names.find(to->name) != Literal_type_names.end()) return true; if (from->name == "literal" && to->name == "address") return rhs_reagent.name == "0"; return to->name == from->name && concrete_type_names_strictly_match(to->left, from->left, rhs_reagent) && concrete_type_names_strictly_match(to->right, from->right, rhs_reagent); } bool contains_type_ingredient_name(const reagent& x) { return contains_type_ingredient_name(x.type); } bool contains_type_ingredient_name(const type_tree* type) { if (!type) return false; if (is_type_ingredient_name(type->name)) return true; return contains_type_ingredient_name(type->left) || contains_type_ingredient_name(type->right); } recipe_ordinal new_variant(recipe_ordinal exemplar, const instruction& inst, const recipe& caller_recipe) { string new_name = next_unused_recipe_name(inst.name); assert(!contains_key(Recipe_ordinal, new_name)); recipe_ordinal new_recipe_ordinal = put(Recipe_ordinal, new_name, Next_recipe_ordinal++); // make a copy assert(contains_key(Recipe, exemplar)); assert(!contains_key(Recipe, new_recipe_ordinal)); Recently_added_recipes.push_back(new_recipe_ordinal); Recently_added_shape_shifting_recipes.push_back(new_recipe_ordinal); put(Recipe, new_recipe_ordinal, get(Recipe, exemplar)); recipe& new_recipe = get(Recipe, new_recipe_ordinal); new_recipe.name = new_name; trace(9993, "transform") << "switching " << inst.name << " to specialized " << header_label(new_recipe_ordinal) << end(); // Since the exemplar never ran any transforms, we have to redo some of the // work of the check_types_by_name transform while supporting type-ingredients. compute_type_names(new_recipe); // that gives enough information to replace type-ingredients with concrete types { map mappings; bool error = false; compute_type_ingredient_mappings(get(Recipe, exemplar), inst, mappings, caller_recipe, &error); if (!error) replace_type_ingredients(new_recipe, mappings); for (map::iterator p = mappings.begin(); p != mappings.end(); ++p) delete p->second; if (error) return 0; // todo: delete new_recipe_ordinal from Recipes and other global state } ensure_all_concrete_types(new_recipe, get(Recipe, exemplar)); return new_recipe_ordinal; } void compute_type_names(recipe& variant) { trace(9993, "transform") << "compute type names: " << variant.name << end(); map type_names; for (int i = 0; i < SIZE(variant.ingredients); ++i) save_or_deduce_type_name(variant.ingredients.at(i), type_names, variant); for (int i = 0; i < SIZE(variant.products); ++i) save_or_deduce_type_name(variant.products.at(i), type_names, variant); for (int i = 0; i < SIZE(variant.steps); ++i) { instruction& inst = variant.steps.at(i); trace(9993, "transform") << " instruction: " << to_string(inst) << end(); for (int in = 0; in < SIZE(inst.ingredients); ++in) save_or_deduce_type_name(inst.ingredients.at(in), type_names, variant); for (int out = 0; out < SIZE(inst.products); ++out) save_or_deduce_type_name(inst.products.at(out), type_names, variant); } } void save_or_deduce_type_name(reagent& x, map& type, const recipe& variant) { trace(9994, "transform") << " checking " << to_string(x) << ": " << names_to_string(x.type) << end(); if (!x.type && contains_key(type, x.name)) { x.type = new type_tree(*get(type, x.name)); //TODO trace(9994, "transform") << " deducing type to " << names_to_string(x.type) << end(); return; } if (!x.type) { raise << maybe(variant.original_name) << "unknown type for " << x.original_string << " (check the name for typos)\n" << end(); return; } if (contains_key(type, x.name)) return; if (x.type->name == "offset" || x.type->name == "variant") return; // special-case for container-access instructions put(type, x.name, x.type); trace(9993, "transform") << "type of " << x.name << " is " << names_to_string(x.type) << end(); } void compute_type_ingredient_mappings(const recipe& exemplar, const instruction& inst, map& mappings, const recipe& caller_recipe, bool* error) { int limit = min(SIZE(inst.ingredients), SIZE(exemplar.ingredients)); for (int i = 0; i < limit; ++i) { const reagent& exemplar_reagent = exemplar.ingredients.at(i); reagent ingredient = inst.ingredients.at(i); canonize_type(ingredient); if (is_mu_address(exemplar_reagent) && ingredient.name == "0") continue; // assume it matches accumulate_type_ingredients(exemplar_reagent, ingredient, mappings, exemplar, inst, caller_recipe, error); } limit = min(SIZE(inst.products), SIZE(exemplar.products)); for (int i = 0; i < limit; ++i) { const reagent& exemplar_reagent = exemplar.products.at(i); reagent product = inst.products.at(i); canonize_type(product); accumulate_type_ingredients(exemplar_reagent, product, mappings, exemplar, inst, caller_recipe, error); } } inline int min(int a, int b) { return (a < b) ? a : b; } void accumulate_type_ingredients(const reagent& exemplar_reagent, reagent& refinement, map& mappings, const recipe& exemplar, const instruction& call_instruction, const recipe& caller_recipe, bool* error) { assert(refinement.type); accumulate_type_ingredients(exemplar_reagent.type, refinement.type, mappings, exemplar, exemplar_reagent, call_instruction, caller_recipe, error); } void accumulate_type_ingredients(const type_tree* exemplar_type, const type_tree* refinement_type, map& mappings, const recipe& exemplar, const reagent& exemplar_reagent, const instruction& call_instruction, const recipe& caller_recipe, bool* error) { if (!exemplar_type) return; if (!refinement_type) { // todo: make this smarter; only flag an error if exemplar_type contains some *new* type ingredient raise << maybe(exemplar.name) << "missing type ingredient in " << exemplar_reagent.original_string << '\n' << end(); return; } if (is_type_ingredient_name(exemplar_type->name)) { const type_tree* curr_refinement_type = NULL; // temporary heap allocation; must always be deleted before it goes out of scope if (refinement_type->left) curr_refinement_type = new type_tree(*refinement_type->left); else if (exemplar_type->right) // splice out refinement_type->right, it'll be used later by the exemplar_type->right curr_refinement_type = new type_tree(refinement_type->name, refinement_type->value, NULL); else curr_refinement_type = new type_tree(*refinement_type); assert(!curr_refinement_type->left); if (!contains_key(mappings, exemplar_type->name)) { trace(9993, "transform") << "adding mapping from " << exemplar_type->name << " to " << to_string(curr_refinement_type) << end(); put(mappings, exemplar_type->name, new type_tree(*curr_refinement_type)); } else { if (!deeply_equal_type_names(get(mappings, exemplar_type->name), curr_refinement_type)) { raise << maybe(caller_recipe.name) << "no call found for '" << to_string(call_instruction) << "'\n" << end(); *error = true; delete curr_refinement_type; return; } if (get(mappings, exemplar_type->name)->name == "literal") { delete get(mappings, exemplar_type->name); put(mappings, exemplar_type->name, new type_tree(*curr_refinement_type)); } } delete curr_refinement_type; } else { accumulate_type_ingredients(exemplar_type->left, refinement_type->left, mappings, exemplar, exemplar_reagent, call_instruction, caller_recipe, error); } accumulate_type_ingredients(exemplar_type->right, refinement_type->right, mappings, exemplar, exemplar_reagent, call_instruction, caller_recipe, error); } void replace_type_ingredients(recipe& new_recipe, const map& mappings) { // update its header if (mappings.empty()) return; trace(9993, "transform") << "replacing in recipe header ingredients" << end(); for (int i = 0; i < SIZE(new_recipe.ingredients); ++i) replace_type_ingredients(new_recipe.ingredients.at(i), mappings, new_recipe); trace(9993, "transform") << "replacing in recipe header products" << end(); for (int i = 0; i < SIZE(new_recipe.products); ++i) replace_type_ingredients(new_recipe.products.at(i), mappings, new_recipe); // update its body for (int i = 0; i < SIZE(new_recipe.steps); ++i) { instruction& inst = new_recipe.steps.at(i); trace(9993, "transform") << "replacing in instruction '" << to_string(inst) << "'" << end(); for (int j = 0; j < SIZE(inst.ingredients); ++j) replace_type_ingredients(inst.ingredients.at(j), mappings, new_recipe); for (int j = 0; j < SIZE(inst.products); ++j) replace_type_ingredients(inst.products.at(j), mappings, new_recipe); // special-case for new: replace type ingredient in first ingredient *value* if (inst.name == "new" && inst.ingredients.at(0).type->name != "literal-string") { type_tree* type = parse_type_tree(inst.ingredients.at(0).name); replace_type_ingredients(type, mappings); inst.ingredients.at(0).name = inspect(type); delete type; } } } void replace_type_ingredients(reagent& x, const map& mappings, const recipe& caller) { string before = to_string(x); trace(9993, "transform") << "replacing in ingredient " << x.original_string << end(); if (!x.type) { raise << "specializing " << caller.original_name << ": missing type for " << x.original_string << '\n' << end(); return; } replace_type_ingredients(x.type, mappings); } // todo: too complicated and likely incomplete; maybe avoid replacing in place? void replace_type_ingredients(type_tree* type, const map& mappings) { if (!type) return; if (contains_key(Type_ordinal, type->name)) // todo: ugly side effect type->value = get(Type_ordinal, type->name); if (!is_type_ingredient_name(type->name) || !contains_key(mappings, type->name)) { replace_type_ingredients(type->left, mappings); replace_type_ingredients(type->right, mappings); return; } const type_tree* replacement = get(mappings, type->name); trace(9993, "transform") << type->name << " => " << names_to_string(replacement) << end(); // type is a single type ingredient assert(!type->left); if (!type->right) assert(!replacement->left); if (!replacement->right) { if (!replacement->left) { type->name = (replacement->name == "literal") ? "number" : replacement->name; type->value = get(Type_ordinal, type->name); } else { type->name = ""; type->value = 0; type->left = new type_tree(*replacement); } replace_type_ingredients(type->right, mappings); } // replace non-last type? else if (type->right) { type->name = ""; type->value = 0; type->left = new type_tree(*replacement); replace_type_ingredients(type->right, mappings); } // replace last type? else { type->name = replacement->name; type->value = get(Type_ordinal, type->name); type->right = new type_tree(*replacement->right); } } type_tree* parse_type_tree(const string& s) { istringstream in(s); in >> std::noskipws; return parse_type_tree(in); } type_tree* parse_type_tree(istream& in) { skip_whitespace_but_not_newline(in); if (!has_data(in)) return NULL; if (in.peek() == ')') { in.get(); return NULL; } if (in.peek() != '(') { string type_name = next_word(in); if (!contains_key(Type_ordinal, type_name)) put(Type_ordinal, type_name, Next_type_ordinal++); type_tree* result = new type_tree(type_name, get(Type_ordinal, type_name)); return result; } in.get(); // skip '(' type_tree* result = NULL; type_tree** curr = &result; while (in.peek() != ')') { assert(has_data(in)); *curr = new type_tree("", 0); skip_whitespace_but_not_newline(in); if (in.peek() == '(') (*curr)->left = parse_type_tree(in); else { (*curr)->name = next_word(in); if (!is_type_ingredient_name((*curr)->name)) { if (!contains_key(Type_ordinal, (*curr)->name)) put(Type_ordinal, (*curr)->name, Next_type_ordinal++); (*curr)->value = get(Type_ordinal, (*curr)->name); } } curr = &(*curr)->right; } in.get(); // skip ')' return result; } string inspect(const type_tree* x) { ostringstream out; dump_inspect(x, out); return out.str(); } void dump_inspect(const type_tree* x, ostream& out) { if (!x->left && !x->right) { out << x->name; return; } out << '('; for (const type_tree* curr = x; curr; curr = curr->right) { if (curr != x) out << ' '; if (curr->left) dump_inspect(curr->left, out); else out << curr->name; } out << ')'; } void ensure_all_concrete_types(/*const*/ recipe& new_recipe, const recipe& exemplar) { for (int i = 0; i < SIZE(new_recipe.ingredients); ++i) ensure_all_concrete_types(new_recipe.ingredients.at(i), exemplar); for (int i = 0; i < SIZE(new_recipe.products); ++i) ensure_all_concrete_types(new_recipe.products.at(i), exemplar); for (int i = 0; i < SIZE(new_recipe.steps); ++i) { instruction& inst = new_recipe.steps.at(i); for (int j = 0; j < SIZE(inst.ingredients); ++j) ensure_all_concrete_types(inst.ingredients.at(j), exemplar); for (int j = 0; j < SIZE(inst.products); ++j) ensure_all_concrete_types(inst.products.at(j), exemplar); } } void ensure_all_concrete_types(/*const*/ reagent& x, const recipe& exemplar) { if (!x.type || contains_type_ingredient_name(x.type)) { raise << maybe(exemplar.name) << "failed to map a type to " << x.original_string << '\n' << end(); if (!x.type) x.type = new type_tree("", 0); // just to prevent crashes later return; } if (x.type->value == -1) { raise << maybe(exemplar.name) << "failed to map a type to the unknown " << x.original_string << '\n' << end(); return; } } :(scenario shape_shifting_recipe_2) def main [ 10:point <- merge 14, 15 11:point <- foo 10:point ] # non-matching shape-shifting variant def foo a:_t, b:_t -> result:number [ local-scope load-ingredients result <- copy 34 ] # matching shape-shifting variant def foo a:_t -> result:_t [ local-scope load-ingredients result <- copy a ] +mem: storing 14 in location 11 +mem: storing 15 in location 12 :(scenario shape_shifting_recipe_nonroot) def main [ 10:foo:point <- merge 14, 15, 16 20:point/raw <- bar 10:foo:point ] # shape-shifting recipe with type ingredient following some other type def bar a:foo:_t -> result:_t [ local-scope load-ingredients result <- get a, x:offset ] container foo:_t [ x:_t y:number ] +mem: storing 14 in location 20 +mem: storing 15 in location 21 :(scenario shape_shifting_recipe_nested) container c:_a:_b [ a:_a b:_b ] def main [ s:address:shared:array:character <- new [abc] {x: (c (address shared array character) number)} <- merge s, 34 foo x ] def foo x:c:_bar:_baz [ local-scope load-ingredients ] :(scenario shape_shifting_recipe_type_deduction_ignores_offsets) def main [ 10:foo:point <- merge 14, 15, 16 20:point/raw <- bar 10:foo:point ] def bar a:foo:_t -> result:_t [ local-scope load-ingredients x:number <- copy 1 result <- get a, x:offset # shouldn't collide with other variable ] container foo:_t [ x:_t y:number ] +mem: storing 14 in location 20 +mem: storing 15 in location 21 :(scenario shape_shifting_recipe_empty) def main [ foo 1 ] # shape-shifting recipe with no body def foo a:_t [ ] # shouldn't crash :(scenario shape_shifting_recipe_handles_shape_shifting_new_ingredient) def main [ 1:address:shared:foo:point <- bar 3 11:foo:point <- copy *1:address:shared:foo:point ] container foo:_t [ x:_t y:number ] def bar x:number -> result:address:shared:foo:_t [ local-scope load-ingredients # new refers to _t in its ingredient *value* result <- new {(foo _t) : type} ] +mem: storing 0 in location 11 +mem: storing 0 in location 12 +mem: storing 0 in location 13 :(scenario shape_shifting_recipe_handles_shape_shifting_new_ingredient_2) def main [ 1:address:shared:foo:point <- bar 3 11:foo:point <- copy *1:address:shared:foo:point ] def bar x:number -> result:address:shared:foo:_t [ local-scope load-ingredients # new refers to _t in its ingredient *value* result <- new {(foo _t) : type} ] # container defined after use container foo:_t [ x:_t y:number ] +mem: storing 0 in location 11 +mem: storing 0 in location 12 +mem: storing 0 in location 13 :(scenario shape_shifting_recipe_supports_compound_types) def main [ 1:address:shared:point <- new point:type 2:address:number <- get-address *1:address:shared:point, y:offset *2:address:number <- copy 34 3:address:shared:point <- bar 1:address:shared:point # specialize _t to address:shared:point 4:point <- copy *3:address:shared:point ] def bar a:_t -> result:_t [ local-scope load-ingredients result <- copy a ] +mem: storing 34 in location 5 :(scenario shape_shifting_recipe_error) % Hide_errors = true; def main [ a:number <- copy 3 b:address:shared:number <- foo a ] def foo a:_t -> b:_t [ load-ingredients b <- copy a ] +error: main: no call found for 'b:address:shared:number <- foo a' :(scenario specialize_inside_recipe_without_header) def main [ foo 3 ] def foo [ local-scope x:number <- next-ingredient # ensure no header 1:number/raw <- bar x # call a shape-shifting recipe ] def bar x:_elem -> y:_elem [ local-scope load-ingredients y <- add x, 1 ] +mem: storing 4 in location 1 :(scenario specialize_with_literal) def main [ local-scope # permit literal to map to number 1:number/raw <- foo 3 ] def foo x:_elem -> y:_elem [ local-scope load-ingredients y <- add x, 1 ] +mem: storing 4 in location 1 :(scenario specialize_with_literal_2) def main [ local-scope # permit literal to map to character 1:character/raw <- foo 3 ] def foo x:_elem -> y:_elem [ local-scope load-ingredients y <- add x, 1 ] +mem: storing 4 in location 1 :(scenario specialize_with_literal_3) def main [ local-scope # permit '0' to map to address to shape-shifting type-ingredient 1:address:shared:character/raw <- foo 0 ] def foo x:address:_elem -> y:address:_elem [ local-scope load-ingredients y <- copy x ] +mem: storing 0 in location 1 $error: 0 :(scenario specialize_with_literal_4) % Hide_errors = true; def main [ local-scope # ambiguous call: what's the type of its ingredient?! foo 0 ] def foo x:address:_elem -> y:address:_elem [ local-scope load-ingredients y <- copy x ] +error: foo: failed to map a type to x +error: foo: failed to map a type to y :(scenario specialize_with_literal_5) def main [ foo 3, 4 # recipe mapping two variables to literals ] def foo x:_elem, y:_elem [ local-scope load-ingredients 1:number/raw <- add x, y ] +mem: storing 7 in location 1 :(scenario multiple_shape_shifting_variants) # try to call two different shape-shifting recipes with the same name def main [ e1:d1:number <- merge 3 e2:d2:number <- merge 4, 5 1:number/raw <- foo e1 2:number/raw <- foo e2 ] # the two shape-shifting definitions def foo a:d1:_elem -> b:number [ local-scope load-ingredients return 34 ] def foo a:d2:_elem -> b:number [ local-scope load-ingredients return 35 ] # the shape-shifting containers they use container d1:_elem [ x:_elem ] container d2:_elem [ x:number y:_elem ] +mem: storing 34 in location 1 +mem: storing 35 in location 2 :(scenario multiple_shape_shifting_variants_2) # static dispatch between shape-shifting variants, _including pointer lookups_ def main [ e1:d1:number <- merge 3 e2:address:shared:d2:number <- new {(d2 number): type} 1:number/raw <- foo e1 2:number/raw <- foo *e2 # different from previous scenario ] def foo a:d1:_elem -> b:number [ local-scope load-ingredients return 34 ] def foo a:d2:_elem -> b:number [ local-scope load-ingredients return 35 ] container d1:_elem [ x:_elem ] container d2:_elem [ x:number y:_elem ] +mem: storing 34 in location 1 +mem: storing 35 in location 2 :(scenario missing_type_in_shape_shifting_recipe) % Hide_errors = true; def main [ a:d1:number <- merge 3 foo a ] def foo a:d1:_elem -> b:number [ local-scope load-ingredients copy e # no such variable return 34 ] container d1:_elem [ x:_elem ] +error: foo: unknown type for e (check the name for typos) +error: specializing foo: missing type for e # and it doesn't crash :(scenario missing_type_in_shape_shifting_recipe_2) % Hide_errors = true; def main [ a:d1:number <- merge 3 foo a ] def foo a:d1:_elem -> b:number [ local-scope load-ingredients get e, x:offset # unknown variable in a 'get', which does some extra checking return 34 ] container d1:_elem [ x:_elem ] +error: foo: unknown type for e (check the name for typos) +error: specializing foo: missing type for e # and it doesn't crash :(scenarios transform) :(scenario specialize_recursive_shape_shifting_recipe) def main [ 1:number <- copy 34 2:number <- foo 1:number ] def foo x:_elem -> y:number [ local-scope load-ingredients { break y:number <- foo x } return y ] +transform: new specialization: foo_2 # transform terminates :(scenarios run) :(scenario specialize_most_similar_variant) def main [ 1:address:shared:number <- new number:type 2:number <- foo 1:address:shared:number ] def foo x:_elem -> y:number [ local-scope load-ingredients return 34 ] def foo x:address:shared:_elem -> y:number [ local-scope load-ingredients return 35 ] +mem: storing 35 in location 2 :(scenario specialize_most_similar_variant_2) # version with headers padded with lots of unrelated concrete types def main [ 1:number <- copy 23 2:address:shared:array:number <- copy 0 3:number <- foo 2:address:shared:array:number, 1:number ] # variant with concrete type def foo dummy:address:shared:array:number, x:number -> y:number, dummy:address:shared:array:number [ local-scope load-ingredients return 34 ] # shape-shifting variant def foo dummy:address:shared:array:number, x:_elem -> y:number, dummy:address:shared:array:number [ local-scope load-ingredients return 35 ] # prefer the concrete variant +mem: storing 34 in location 3 :(scenario specialize_most_similar_variant_3) def main [ 1:address:shared:array:character <- new [abc] foo 1:address:shared:array:character ] def foo x:address:shared:array:character [ 2:number <- copy 34 ] def foo x:address:_elem [ 2:number <- copy 35 ] # make sure the more precise version was used +mem: storing 34 in location 2 :(scenario specialize_literal_as_number) def main [ 1:number <- foo 23 ] def foo x:_elem -> y:number [ local-scope load-ingredients return 34 ] def foo x:character -> y:number [ local-scope load-ingredients return 35 ] +mem: storing 34 in location 1 :(scenario specialize_literal_as_number_2) # version calling with literal def main [ 1:number <- foo 0 ] # variant with concrete type def foo x:number -> y:number [ local-scope load-ingredients return 34 ] # shape-shifting variant def foo x:address:shared:_elem -> y:number [ local-scope load-ingredients return 35 ] # prefer the concrete variant, ignore concrete types in scoring the shape-shifting variant +mem: storing 34 in location 1