//:: Like container definitions, recipes too can contain type parameters. :(scenario generic_recipe) recipe main [ 10:point <- merge 14, 15 11:point <- foo 10:point ] # non-matching variant recipe foo a:number -> result:number [ local-scope load-ingredients result <- copy 34 ] # matching generic variant recipe foo a:_t -> result:_t [ local-scope load-ingredients result <- copy a ] +mem: storing 14 in location 11 +mem: storing 15 in location 12 //: Before anything else, disable transforms for generic recipes. :(before "End Transform Checks") if (any_type_ingredient_in_header(/*recipe_ordinal*/p->first)) continue; //: We'll be creating recipes without loading them from anywhere by //: *specializing* existing recipes, so make sure we don't clear any of those //: when we start running tests. :(before "End Loading .mu Files") recently_added_recipes.clear(); recently_added_types.clear(); :(before "End Instruction Dispatch(inst, best_score)") if (best_score == -1) { trace(9992, "transform") << "no variant found; searching for variant with suitable type ingredients" << end(); recipe_ordinal exemplar = pick_matching_generic_variant(variants, inst, best_score); if (exemplar) { trace(9992, "transform") << "found variant to specialize: " << exemplar << ' ' << get(Recipe, exemplar).name << end(); variants.push_back(new_variant(exemplar, inst)); inst.name = get(Recipe, variants.back()).name; trace(9992, "transform") << "new specialization: " << inst.name << end(); } } :(code) recipe_ordinal pick_matching_generic_variant(vector& variants, const instruction& inst, long long int& best_score) { recipe_ordinal result = 0; for (long long int i = 0; i < SIZE(variants); ++i) { if (variants.at(i) == -1) continue; // ghost from a previous test trace(9992, "transform") << "checking generic variant " << i << end(); long long int current_score = generic_variant_score(inst, variants.at(i)); trace(9992, "transform") << "final score: " << current_score << end(); if (current_score > best_score) { trace(9992, "transform") << "matches" << end(); result = variants.at(i); best_score = current_score; } } return result; } long long int generic_variant_score(const instruction& inst, recipe_ordinal variant) { if (!any_type_ingredient_in_header(variant)) { trace(9993, "transform") << "no type ingredients" << end(); return -1; } const vector& header_ingredients = get(Recipe, variant).ingredients; if (SIZE(inst.ingredients) < SIZE(header_ingredients)) { trace(9993, "transform") << "too few ingredients" << end(); return -1; } for (long long int i = 0; i < SIZE(header_ingredients); ++i) { if (!non_type_ingredients_match(header_ingredients.at(i), inst.ingredients.at(i))) { trace(9993, "transform") << "mismatch: ingredient " << i << end(); return -1; } } if (SIZE(inst.products) > SIZE(get(Recipe, variant).products)) { trace(9993, "transform") << "too few products" << end(); return -1; } const vector& header_products = get(Recipe, variant).products; for (long long int i = 0; i < SIZE(inst.products); ++i) { if (!non_type_ingredients_match(header_products.at(i), inst.products.at(i))) { trace(9993, "transform") << "mismatch: product " << i << end(); return -1; } } // the greater the number of unused ingredients, the lower the score return 100 - (SIZE(get(Recipe, variant).products)-SIZE(inst.products)) - (SIZE(inst.ingredients)-SIZE(get(Recipe, variant).ingredients)); // ok to go negative } bool any_type_ingredient_in_header(recipe_ordinal variant) { for (long long int i = 0; i < SIZE(get(Recipe, variant).ingredients); ++i) { if (contains_type_ingredient_name(get(Recipe, variant).ingredients.at(i))) return true; } for (long long int i = 0; i < SIZE(get(Recipe, variant).products); ++i) { if (contains_type_ingredient_name(get(Recipe, variant).products.at(i))) return true; } return false; } bool non_type_ingredients_match(const reagent& lhs, const reagent& rhs) { if (contains_type_ingredient_name(lhs)) return true; return types_match(lhs, rhs); } bool contains_type_ingredient_name(const reagent& x) { return contains_type_ingredient_name(x.properties.at(0).second); } bool contains_type_ingredient_name(const string_tree* type) { if (!type) return false; if (is_type_ingredient_name(type->value)) return true; return contains_type_ingredient_name(type->left) || contains_type_ingredient_name(type->right); } bool is_type_ingredient_name(const string& type) { return !type.empty() && type.at(0) == '_'; } recipe_ordinal new_variant(recipe_ordinal exemplar, const instruction& inst) { string new_name = next_unused_recipe_name(inst.name); trace(9993, "transform") << "switching " << inst.name << " to " << new_name << end(); assert(!contains_key(Recipe_ordinal, new_name)); recipe_ordinal new_recipe_ordinal = put(Recipe_ordinal, new_name, Next_recipe_ordinal++); // make a copy assert(contains_key(Recipe, exemplar)); assert(!contains_key(Recipe, new_recipe_ordinal)); recently_added_recipes.push_back(new_recipe_ordinal); put(Recipe, new_recipe_ordinal, get(Recipe, exemplar)); recipe& new_recipe = get(Recipe, new_recipe_ordinal); new_recipe.name = new_name; // Since the exemplar never ran any transforms, we have to redo some of the // work of the check_types_by_name transform while supporting type-ingredients. compute_type_names(new_recipe); // that gives enough information to replace type-ingredients with concrete types map mappings; compute_type_ingredient_mappings(get(Recipe, exemplar), inst, mappings); replace_type_ingredients(new_recipe, mappings); ensure_all_concrete_types(new_recipe); // finally, perform all transforms on the new specialization for (long long int t = 0; t < SIZE(Transform); ++t) { (*Transform.at(t))(new_recipe_ordinal); } new_recipe.transformed_until = SIZE(Transform)-1; return new_recipe_ordinal; } void compute_type_names(recipe& variant) { trace(9993, "transform") << "compute type names: " << variant.name << end(); map type_names; for (long long int i = 0; i < SIZE(variant.ingredients); ++i) save_or_deduce_type_name(variant.ingredients.at(i), type_names); for (long long int i = 0; i < SIZE(variant.products); ++i) save_or_deduce_type_name(variant.products.at(i), type_names); for (long long int i = 0; i < SIZE(variant.steps); ++i) { instruction& inst = variant.steps.at(i); trace(9993, "transform") << " instruction: " << inst.to_string() << end(); for (long long int in = 0; in < SIZE(inst.ingredients); ++in) save_or_deduce_type_name(inst.ingredients.at(in), type_names); for (long long int out = 0; out < SIZE(inst.products); ++out) save_or_deduce_type_name(inst.products.at(out), type_names); } } void save_or_deduce_type_name(reagent& x, map& type_name) { trace(9994, "transform") << " checking " << x.to_string() << ": " << debug_string(x.properties.at(0).second) << end(); if (!x.properties.at(0).second && contains_key(type_name, x.name)) { x.properties.at(0).second = new string_tree(*get(type_name, x.name)); trace(9994, "transform") << " deducing type to " << debug_string(x.properties.at(0).second) << end(); return; } if (!x.properties.at(0).second) { raise << "unknown type for " << x.original_string << '\n' << end(); return; } if (contains_key(type_name, x.name)) return; if (x.properties.at(0).second->value == "offset" || x.properties.at(0).second->value == "variant") return; // special-case for container-access instructions put(type_name, x.name, x.properties.at(0).second); trace(9993, "transform") << "type of " << x.name << " is " << debug_string(x.properties.at(0).second) << end(); } void compute_type_ingredient_mappings(const recipe& exemplar, const instruction& inst, map& mappings) { for (long long int i = 0; i < SIZE(exemplar.ingredients); ++i) { const reagent& base = exemplar.ingredients.at(i); reagent ingredient = inst.ingredients.at(i); assert(ingredient.properties.at(0).second); canonize_type(ingredient); accumulate_type_ingredients(base, ingredient, mappings, exemplar); } for (long long int i = 0; i < SIZE(exemplar.products); ++i) { const reagent& base = exemplar.products.at(i); reagent product = inst.products.at(i); assert(product.properties.at(0).second); canonize_type(product); accumulate_type_ingredients(base, product, mappings, exemplar); } } void accumulate_type_ingredients(const reagent& base, reagent& refinement, map& mappings, const recipe& exemplar) { assert(refinement.properties.at(0).second); accumulate_type_ingredients(base.properties.at(0).second, refinement.properties.at(0).second, mappings, exemplar, base); } void accumulate_type_ingredients(const string_tree* base, const string_tree* refinement, map& mappings, const recipe& exemplar, const reagent& r) { if (!base) return; if (!refinement) { raise_error << maybe(exemplar.name) << "missing type ingredient in " << r.original_string << '\n' << end(); return; } if (!base->value.empty() && base->value.at(0) == '_') { assert(!refinement->value.empty()); if (base->right) { raise_error << "type_ingredients in non-last position not currently supported\n" << end(); return; } if (!contains_key(mappings, base->value)) { trace(9993, "transform") << "adding mapping from " << base->value << " to " << debug_string(refinement) << end(); put(mappings, base->value, new string_tree(*refinement)); } else { assert(deeply_equal(get(mappings, base->value), refinement)); } } else { accumulate_type_ingredients(base->left, refinement->left, mappings, exemplar, r); } accumulate_type_ingredients(base->right, refinement->right, mappings, exemplar, r); } void replace_type_ingredients(recipe& new_recipe, const map& mappings) { // update its header if (mappings.empty()) return; trace(9993, "transform") << "replacing in recipe header ingredients" << end(); for (long long int i = 0; i < SIZE(new_recipe.ingredients); ++i) replace_type_ingredients(new_recipe.ingredients.at(i), mappings); trace(9993, "transform") << "replacing in recipe header products" << end(); for (long long int i = 0; i < SIZE(new_recipe.products); ++i) replace_type_ingredients(new_recipe.products.at(i), mappings); // update its body for (long long int i = 0; i < SIZE(new_recipe.steps); ++i) { instruction& inst = new_recipe.steps.at(i); trace(9993, "transform") << "replacing in instruction '" << inst.to_string() << "'" << end(); for (long long int j = 0; j < SIZE(inst.ingredients); ++j) replace_type_ingredients(inst.ingredients.at(j), mappings); for (long long int j = 0; j < SIZE(inst.products); ++j) replace_type_ingredients(inst.products.at(j), mappings); // special-case for new: replace type ingredient in first ingredient *value* if (inst.name == "new" && inst.ingredients.at(0).name.at(0) != '[') { string_tree* type_name = parse_string_tree(inst.ingredients.at(0).name); replace_type_ingredients(type_name, mappings); inst.ingredients.at(0).name = type_name->to_string(); delete type_name; } } } void replace_type_ingredients(reagent& x, const map& mappings) { trace(9993, "transform") << "replacing in ingredient " << x.original_string << end(); // replace properties assert(x.properties.at(0).second); replace_type_ingredients(x.properties.at(0).second, mappings); // refresh types from properties delete x.type; x.type = new_type_tree(x.properties.at(0).second); if (x.type) trace(9993, "transform") << " after: " << debug_string(x.type) << end(); } void replace_type_ingredients(string_tree* type, const map& mappings) { if (!type) return; if (is_type_ingredient_name(type->value) && contains_key(mappings, type->value)) { const string_tree* replacement = get(mappings, type->value); trace(9993, "transform") << type->value << " => " << debug_string(replacement) << end(); type->value = replacement->value; if (replacement->left) type->left = new string_tree(*replacement->left); if (replacement->right) type->right = new string_tree(*replacement->right); } replace_type_ingredients(type->left, mappings); replace_type_ingredients(type->right, mappings); } void ensure_all_concrete_types(const recipe& new_recipe) { for (long long int i = 0; i < SIZE(new_recipe.ingredients); ++i) ensure_all_concrete_types(new_recipe.ingredients.at(i).type); for (long long int i = 0; i < SIZE(new_recipe.products); ++i) ensure_all_concrete_types(new_recipe.products.at(i).type); for (long long int i = 0; i < SIZE(new_recipe.steps); ++i) { const instruction& inst = new_recipe.steps.at(i); for (long long int j = 0; j < SIZE(inst.ingredients); ++j) ensure_all_concrete_types(inst.ingredients.at(j).type); for (long long int j = 0; j < SIZE(inst.products); ++j) ensure_all_concrete_types(inst.products.at(j).type); } } void ensure_all_concrete_types(const type_tree* x) { if (!x) { raise << "null type\n" << end(); return; } if (x->value == -1) { raise << "unknown type\n" << end(); return; } } :(scenario generic_recipe_2) recipe main [ 10:point <- merge 14, 15 11:point <- foo 10:point ] # non-matching generic variant recipe foo a:_t, b:_t -> result:number [ local-scope load-ingredients result <- copy 34 ] # matching generic variant recipe foo a:_t -> result:_t [ local-scope load-ingredients result <- copy a ] +mem: storing 14 in location 11 +mem: storing 15 in location 12 :(scenario generic_recipe_nonroot) recipe main [ 10:foo:point <- merge 14, 15, 16 20:point/raw <- bar 10:foo:point ] # generic recipe with type ingredient following some other type recipe bar a:foo:_t -> result:_t [ local-scope load-ingredients result <- get a, x:offset ] container foo:_t [ x:_t y:number ] +mem: storing 14 in location 20 +mem: storing 15 in location 21 :(scenario generic_recipe_type_deduction_ignores_offsets) recipe main [ 10:foo:point <- merge 14, 15, 16 20:point/raw <- bar 10:foo:point ] recipe bar a:foo:_t -> result:_t [ local-scope load-ingredients x:number <- copy 1 result <- get a, x:offset # shouldn't collide with other variable ] container foo:_t [ x:_t y:number ] +mem: storing 14 in location 20 +mem: storing 15 in location 21 :(scenario generic_recipe_handles_generic_new_ingredient) recipe main [ 1:address:foo:point <- bar 3 11:foo:point <- copy *1:address:foo:point ] container foo:_t [ x:_t y:number ] recipe bar x:number -> result:address:foo:_t [ local-scope load-ingredients # new refers to _t in its ingredient *value* result <- new {(foo _t) : type} ] +mem: storing 0 in location 11 +mem: storing 0 in location 12 +mem: storing 0 in location 13 # todo: container after generic recipe containing 'new'