//: Routines can be put in a 'waiting' state, from which it will be ready to //: run again when a specific memory location changes its value. This is Mu's //: basic technique for orchestrating the order in which different routines //: operate. :(scenario wait_for_location) def f1 [ 10:num <- copy 34 start-running f2 20:location <- copy 10/unsafe wait-for-reset-then-set 20:location # wait for f2 to run and reset location 1 30:num <- copy 10:num ] def f2 [ 10:location <- copy 0/unsafe ] +schedule: f1 +run: waiting for location 10 to reset +schedule: f2 +schedule: waking up routine 1 +schedule: f1 +mem: storing 1 in location 30 //: define the new state that all routines can be in :(before "End routine States") WAITING, :(before "End routine Fields") // only if state == WAITING int waiting_on_location; :(before "End routine Constructor") waiting_on_location = 0; :(before "End Mu Test Teardown") if (Passed && any_routines_waiting()) raise << Current_scenario->name << ": deadlock!\n" << end(); :(before "End Run Routine") if (any_routines_waiting()) { raise << "deadlock!\n" << end(); dump_waiting_routines(); } :(before "End Test Teardown") if (Passed && any_routines_with_error()) raise << "some routines died with errors\n" << end(); :(code) bool any_routines_waiting() { for (int i = 0; i < SIZE(Routines); ++i) { if (Routines.at(i)->state == WAITING) return true; } return false; } void dump_waiting_routines() { for (int i = 0; i < SIZE(Routines); ++i) { if (Routines.at(i)->state == WAITING) cerr << i << ": " << routine_label(Routines.at(i)) << '\n'; } } :(scenario wait_for_location_can_deadlock) % Hide_errors = true; def main [ 10:num <- copy 1 20:location <- copy 10/unsafe wait-for-reset-then-set 20:location ] +error: deadlock! //: Primitive recipe to put routines in that state. //: This primitive is also known elsewhere as compare-and-set (CAS). Used to //: build locks. :(before "End Primitive Recipe Declarations") WAIT_FOR_RESET_THEN_SET, :(before "End Primitive Recipe Numbers") put(Recipe_ordinal, "wait-for-reset-then-set", WAIT_FOR_RESET_THEN_SET); :(before "End Primitive Recipe Checks") case WAIT_FOR_RESET_THEN_SET: { if (SIZE(inst.ingredients) != 1) { raise << maybe(get(Recipe, r).name) << "'wait-for-reset-then-set' requires exactly one ingredient, but got '" << inst.original_string << "'\n" << end(); break; } if (!is_mu_location(inst.ingredients.at(0))) { raise << maybe(get(Recipe, r).name) << "'wait-for-reset-then-set' requires a location ingredient, but got '" << inst.ingredients.at(0).original_string << "'\n" << end(); } break; } :(before "End Primitive Recipe Implementations") case WAIT_FOR_RESET_THEN_SET: { int loc = static_cast(ingredients.at(0).at(0)); trace(9998, "run") << "wait: *" << loc << " = " << get_or_insert(Memory, loc) << end(); if (get_or_insert(Memory, loc) == 0) { trace(9998, "run") << "location " << loc << " is already 0; setting" << end(); put(Memory, loc, 1); break; } trace(9998, "run") << "waiting for location " << loc << " to reset" << end(); Current_routine->state = WAITING; Current_routine->waiting_on_location = loc; break; } //: Counterpart to unlock a lock. :(before "End Primitive Recipe Declarations") RESET, :(before "End Primitive Recipe Numbers") put(Recipe_ordinal, "reset", RESET); :(before "End Primitive Recipe Checks") case RESET: { if (SIZE(inst.ingredients) != 1) { raise << maybe(get(Recipe, r).name) << "'reset' requires exactly one ingredient, but got '" << inst.original_string << "'\n" << end(); break; } if (!is_mu_location(inst.ingredients.at(0))) { raise << maybe(get(Recipe, r).name) << "'reset' requires a location ingredient, but got '" << inst.ingredients.at(0).original_string << "'\n" << end(); } break; } :(before "End Primitive Recipe Implementations") case RESET: { int loc = static_cast(ingredients.at(0).at(0)); put(Memory, loc, 0); trace(9998, "run") << "reset: *" << loc << " = " << get_or_insert(Memory, loc) << end(); break; } //: scheduler tweak to get routines out of that state :(before "End Scheduler State Transitions") for (int i = 0; i < SIZE(Routines); ++i) { if (Routines.at(i)->state != WAITING) continue; int loc = Routines.at(i)->waiting_on_location; if (loc && get_or_insert(Memory, loc) == 0) { trace(9999, "schedule") << "waking up routine " << Routines.at(i)->id << end(); put(Memory, loc, 1); Routines.at(i)->state = RUNNING; Routines.at(i)->waiting_on_location = 0; } } //: Primitive to help compute locations to wait on. //: Only supports elements immediately inside containers; no arrays or //: containers within containers yet. :(scenario get_location) def main [ 12:num <- copy 34 13:num <- copy 35 15:location <- get-location 12:point, 1:offset ] +mem: storing 13 in location 15 :(before "End Primitive Recipe Declarations") GET_LOCATION, :(before "End Primitive Recipe Numbers") put(Recipe_ordinal, "get-location", GET_LOCATION); :(before "End Primitive Recipe Checks") case GET_LOCATION: { if (SIZE(inst.ingredients) != 2) { raise << maybe(get(Recipe, r).name) << "'get-location' expects exactly 2 ingredients in '" << inst.original_string << "'\n" << end(); break; } reagent/*copy*/ base = inst.ingredients.at(0); if (!canonize_type(base)) break; if (!base.type) { raise << maybe(get(Recipe, r).name) << "first ingredient of 'get-location' should be a container, but got '" << inst.ingredients.at(0).original_string << "'\n" << end(); break; } const type_tree* base_root_type = base.type->atom ? base.type : base.type->left; if (!base_root_type->atom || base_root_type->value == 0 || !contains_key(Type, base_root_type->value) || get(Type, base_root_type->value).kind != CONTAINER) { raise << maybe(get(Recipe, r).name) << "first ingredient of 'get-location' should be a container, but got '" << inst.ingredients.at(0).original_string << "'\n" << end(); break; } type_ordinal base_type = base.type->value; const reagent& offset = inst.ingredients.at(1); if (!is_literal(offset) || !is_mu_scalar(offset)) { raise << maybe(get(Recipe, r).name) << "second ingredient of 'get-location' should have type 'offset', but got '" << inst.ingredients.at(1).original_string << "'\n" << end(); break; } int offset_value = 0; if (is_integer(offset.name)) { // later layers permit non-integer offsets offset_value = to_integer(offset.name); if (offset_value < 0 || offset_value >= SIZE(get(Type, base_type).elements)) { raise << maybe(get(Recipe, r).name) << "invalid offset " << offset_value << " for '" << get(Type, base_type).name << "'\n" << end(); break; } } else { offset_value = offset.value; } if (inst.products.empty()) break; if (!is_mu_location(inst.products.at(0))) { raise << maybe(get(Recipe, r).name) << "'get-location " << base.original_string << ", " << offset.original_string << "' should write to type location but '" << inst.products.at(0).name << "' has type '" << names_to_string_without_quotes(inst.products.at(0).type) << "'\n" << end(); break; } break; } :(before "End Primitive Recipe Implementations") case GET_LOCATION: { reagent/*copy*/ base = current_instruction().ingredients.at(0); canonize(base); int base_address = base.value; if (base_address == 0) { raise << maybe(current_recipe_name()) << "tried to access location 0 in '" << to_original_string(current_instruction()) << "'\n" << end(); break; } const type_tree* base_root_type = root_type(base.type); int offset = ingredients.at(1).at(0); if (offset < 0 || offset >= SIZE(get(Type, base_root_type->value).elements)) break; // copied from Check above int result = base_address; for (int i = 0; i < offset; ++i) result += size_of(element_type(base.type, i)); trace(9998, "run") << "address to copy is " << result << end(); products.resize(1); products.at(0).push_back(result); break; } :(code) bool is_mu_location(reagent/*copy*/ x) { if (!canonize_type(x)) return false; if (!x.type) return false; if (!x.type->atom) return false; return x.type->value == get(Type_ordinal, "location"); } :(scenario get_location_out_of_bounds) % Hide_errors = true; def main [ 12:num <- copy 34 13:num <- copy 35 14:num <- copy 36 get-location 12:point-number/raw, 2:offset # point-number occupies 3 locations but has only 2 fields; out of bounds ] +error: main: invalid offset 2 for 'point-number' :(scenario get_location_out_of_bounds_2) % Hide_errors = true; def main [ 12:num <- copy 34 13:num <- copy 35 14:num <- copy 36 get-location 12:point-number/raw, -1:offset ] +error: main: invalid offset -1 for 'point-number' :(scenario get_location_product_type_mismatch) % Hide_errors = true; container boolbool [ x:bool y:bool ] def main [ 12:bool <- copy 1 13:bool <- copy 0 15:bool <- get-location 12:boolbool, 1:offset ] +error: main: 'get-location 12:boolbool, 1:offset' should write to type location but '15' has type 'boolean' :(scenario get_location_indirect) # 'get-location' can read from container address def main [ 1:num <- copy 10 # 10 reserved for refcount 11:num <- copy 34 12:num <- copy 35 4:location <- get-location 1:&:point/lookup, 0:offset ] +mem: storing 11 in location 4 :(scenario get_location_indirect_2) def main [ 1:num <- copy 10 # 10 reserved for refcount 11:num <- copy 34 12:num <- copy 35 4:&:num <- copy 20/unsafe 4:&:location/lookup <- get-location 1:&:point/lookup, 0:offset ] +mem: storing 11 in location 21 //: allow waiting on a routine to complete :(scenario wait_for_routine) def f1 [ # add a few routines to run 1:num/routine <- start-running f2 2:num/routine <- start-running f3 wait-for-routine 1:num/routine # now wait for f2 to *complete* and modify location 13 before using its value 20:num <- copy 13:num ] def f2 [ 10:num <- copy 0 # just padding switch # simulate a block; routine f1 shouldn't restart at this point 13:num <- copy 34 ] def f3 [ # padding routine just to help simulate the block in f2 using 'switch' 11:num <- copy 0 12:num <- copy 0 ] +schedule: f1 +run: waiting for routine 2 +schedule: f2 +schedule: f3 +schedule: f2 +schedule: waking up routine 1 +schedule: f1 # if we got the synchronization wrong we'd be storing 0 in location 20 +mem: storing 34 in location 20 :(before "End routine Fields") // only if state == WAITING int waiting_on_routine; :(before "End routine Constructor") waiting_on_routine = 0; :(before "End Primitive Recipe Declarations") WAIT_FOR_ROUTINE, :(before "End Primitive Recipe Numbers") put(Recipe_ordinal, "wait-for-routine", WAIT_FOR_ROUTINE); :(before "End Primitive Recipe Checks") case WAIT_FOR_ROUTINE: { if (SIZE(inst.ingredients) != 1) { raise << maybe(get(Recipe, r).name) << "'wait-for-routine' requires exactly one ingredient, but got '" << inst.original_string << "'\n" << end(); break; } if (!is_mu_number(inst.ingredients.at(0))) { raise << maybe(get(Recipe, r).name) << "first ingredient of 'wait-for-routine' should be a routine id generated by 'start-running', but got '" << inst.ingredients.at(0).original_string << "'\n" << end(); break; } break; } :(before "End Primitive Recipe Implementations") case WAIT_FOR_ROUTINE: { if (ingredients.at(0).at(0) == Current_routine->id) { raise << maybe(current_recipe_name()) << "routine can't wait for itself! '" << to_original_string(current_instruction()) << "'\n" << end(); break; } Current_routine->state = WAITING; Current_routine->waiting_on_routine = ingredients.at(0).at(0); trace(9998, "run") << "waiting for routine " << ingredients.at(0).at(0) << end(); break; } :(before "End Scheduler State Transitions") // Wake up any routines waiting for other routines to complete. // Important: this must come after the scheduler loop above giving routines // waiting for locations to change a chance to wake up. for (int i = 0; i < SIZE(Routines); ++i) { if (Routines.at(i)->state != WAITING) continue; routine* waiter = Routines.at(i); if (!waiter->waiting_on_routine) continue; int id = waiter->waiting_on_routine; assert(id != waiter->id); // routine can't wait on itself for (int j = 0; j < SIZE(Routines); ++j) { const routine* waitee = Routines.at(j); if (waitee->id == id && waitee->state != RUNNING && waitee->state != WAITING) { // routine is COMPLETED or DISCONTINUED trace(9999, "schedule") << "waking up routine " << waiter->id << end(); waiter->state = RUNNING; waiter->waiting_on_routine = 0; } } } //: yield voluntarily to let some other routine run :(before "End Primitive Recipe Declarations") SWITCH, :(before "End Primitive Recipe Numbers") put(Recipe_ordinal, "switch", SWITCH); :(before "End Primitive Recipe Checks") case SWITCH: { break; } :(before "End Primitive Recipe Implementations") case SWITCH: { ++current_step_index(); goto stop_running_current_routine; } :(scenario switch_preempts_current_routine) def f1 [ start-running f2 1:num <- copy 34 switch 3:num <- copy 36 ] def f2 [ 2:num <- copy 35 ] +mem: storing 34 in location 1 # context switch +mem: storing 35 in location 2 # back to original thread +mem: storing 36 in location 3 //:: helpers for manipulating routines in tests //: //: Managing arbitrary scenarios requires the ability to: //: a) check if a routine is blocked //: b) restart a blocked routine (`restart`) //: //: A routine is blocked either if it's waiting or if it explicitly signals //: that it's blocked (even as it periodically wakes up and polls for some //: event). //: //: Signalling blockedness might well be a huge hack. But Mu doesn't have Unix //: signals to avoid polling with, because signals are also pretty hacky. :(before "End routine Fields") bool blocked; :(before "End routine Constructor") blocked = false; :(before "End Primitive Recipe Declarations") CURRENT_ROUTINE_IS_BLOCKED, :(before "End Primitive Recipe Numbers") put(Recipe_ordinal, "current-routine-is-blocked", CURRENT_ROUTINE_IS_BLOCKED); :(before "End Primitive Recipe Checks") case CURRENT_ROUTINE_IS_BLOCKED: { if (!inst.ingredients.empty()) { raise << maybe(get(Recipe, r).name) << "'current-routine-is-blocked' should have no ingredients, but got '" << inst.original_string << "'\n" << end(); break; } break; } :(before "End Primitive Recipe Implementations") case CURRENT_ROUTINE_IS_BLOCKED: { Current_routine->blocked = true; break; } :(before "End Primitive Recipe Declarations") CURRENT_ROUTINE_IS_UNBLOCKED, :(before "End Primitive Recipe Numbers") put(Recipe_ordinal, "current-routine-is-unblocked", CURRENT_ROUTINE_IS_UNBLOCKED); :(before "End Primitive Recipe Checks") case CURRENT_ROUTINE_IS_UNBLOCKED: { if (!inst.ingredients.empty()) { raise << maybe(get(Recipe, r).name) << "'current-routine-is-unblocked' should have no ingredients, but got '" << inst.original_string << "'\n" << end(); break; } break; } :(before "End Primitive Recipe Implementations") case CURRENT_ROUTINE_IS_UNBLOCKED: { Current_routine->blocked = false; break; } //: also allow waiting on a routine to block //: (just for tests; use wait_for_routine above wherever possible) :(scenario wait_for_routine_to_block) def f1 [ 1:num/routine <- start-running f2 wait-for-routine-to-block 1:num/routine # now wait for f2 to run and modify location 10 before using its value 11:num <- copy 10:num ] def f2 [ 10:num <- copy 34 ] +schedule: f1 +run: waiting for routine 2 to block +schedule: f2 +schedule: waking up routine 1 because routine 2 is blocked +schedule: f1 # if we got the synchronization wrong we'd be storing 0 in location 11 +mem: storing 34 in location 11 :(before "End routine Fields") // only if state == WAITING int waiting_on_routine_to_block; :(before "End routine Constructor") waiting_on_routine_to_block = 0; :(before "End Primitive Recipe Declarations") WAIT_FOR_ROUTINE_TO_BLOCK, :(before "End Primitive Recipe Numbers") put(Recipe_ordinal, "wait-for-routine-to-block", WAIT_FOR_ROUTINE_TO_BLOCK); :(before "End Primitive Recipe Checks") case WAIT_FOR_ROUTINE_TO_BLOCK: { if (SIZE(inst.ingredients) != 1) { raise << maybe(get(Recipe, r).name) << "'wait-for-routine-to-block' requires exactly one ingredient, but got '" << inst.original_string << "'\n" << end(); break; } if (!is_mu_number(inst.ingredients.at(0))) { raise << maybe(get(Recipe, r).name) << "first ingredient of 'wait-for-routine-to-block' should be a routine id generated by 'start-running', but got '" << inst.ingredients.at(0).original_string << "'\n" << end(); break; } break; } :(before "End Primitive Recipe Implementations") case WAIT_FOR_ROUTINE_TO_BLOCK: { if (ingredients.at(0).at(0) == Current_routine->id) { raise << maybe(current_recipe_name()) << "routine can't wait for itself! '" << to_original_string(current_instruction()) << "'\n" << end(); break; } Current_routine->state = WAITING; Current_routine->waiting_on_routine_to_block = ingredients.at(0).at(0); trace(9998, "run") << "waiting for routine " << ingredients.at(0).at(0) << " to block" << end(); break; } :(before "End Scheduler State Transitions") // Wake up any routines waiting for other routines to stop running. for (int i = 0; i < SIZE(Routines); ++i) { if (Routines.at(i)->state != WAITING) continue; routine* waiter = Routines.at(i); if (!waiter->waiting_on_routine_to_block) continue; int id = waiter->waiting_on_routine_to_block; assert(id != waiter->id); // routine can't wait on itself for (int j = 0; j < SIZE(Routines); ++j) { const routine* waitee = Routines.at(j); if (waitee->id != id) continue; if (waitee->state != RUNNING || waitee->blocked) { trace(9999, "schedule") << "waking up routine " << waiter->id << " because routine " << waitee->id << " is blocked" << end(); waiter->state = RUNNING; waiter->waiting_on_routine_to_block = 0; } } } //: helper for restarting blocking routines in tests :(before "End Primitive Recipe Declarations") RESTART, :(before "End Primitive Recipe Numbers") put(Recipe_ordinal, "restart", RESTART); :(before "End Primitive Recipe Checks") case RESTART: { if (SIZE(inst.ingredients) != 1) { raise << maybe(get(Recipe, r).name) << "'restart' requires exactly one ingredient, but got '" << inst.original_string << "'\n" << end(); break; } if (!is_mu_number(inst.ingredients.at(0))) { raise << maybe(get(Recipe, r).name) << "first ingredient of 'restart' should be a routine id generated by 'start-running', but got '" << inst.ingredients.at(0).original_string << "'\n" << end(); break; } break; } :(before "End Primitive Recipe Implementations") case RESTART: { int id = ingredients.at(0).at(0); for (int i = 0; i < SIZE(Routines); ++i) { if (Routines.at(i)->id == id) { if (Routines.at(i)->state == WAITING) Routines.at(i)->state = RUNNING; Routines.at(i)->blocked = false; break; } } break; } :(scenario cannot_restart_completed_routine) % Scheduling_interval = 1; def main [ local-scope r:num/routine-id <- start-running f x:num <- copy 0 # wait for f to be scheduled # r is COMPLETED by this point restart r # should have no effect x:num <- copy 0 # give f time to be scheduled (though it shouldn't be) ] def f [ 1:num/raw <- copy 1 ] # shouldn't crash :(scenario restart_blocked_routine) % Scheduling_interval = 1; def main [ local-scope r:num/routine-id <- start-running f wait-for-routine-to-block r # get past the block in f below restart r wait-for-routine-to-block r # should run f to completion ] # function with one block def f [ current-routine-is-blocked # 8 instructions of padding, many more than 'main' above 1:num <- add 1:num, 1 1:num <- add 1:num, 1 1:num <- add 1:num, 1 1:num <- add 1:num, 1 1:num <- add 1:num, 1 1:num <- add 1:num, 1 1:num <- add 1:num, 1 1:num <- add 1:num, 1 1:num <- add 1:num, 1 ] # make sure all of f ran +mem: storing 8 in location 1