//: So far the recipes we define can't run each other. Let's fix that. void test_calling_recipe() { run( "def main [\n" " f\n" "]\n" "def f [\n" " 3:num <- add 2, 2\n" "]\n" ); CHECK_TRACE_CONTENTS( "mem: storing 4 in location 3\n" ); } void test_return_on_fallthrough() { run( "def main [\n" " f\n" " 1:num <- copy 0\n" " 2:num <- copy 0\n" " 3:num <- copy 0\n" "]\n" "def f [\n" " 4:num <- copy 0\n" " 5:num <- copy 0\n" "]\n" ); CHECK_TRACE_CONTENTS( "run: f\n" "run: {4: \"number\"} <- copy {0: \"literal\"}\n" "run: {5: \"number\"} <- copy {0: \"literal\"}\n" "run: {1: \"number\"} <- copy {0: \"literal\"}\n" "run: {2: \"number\"} <- copy {0: \"literal\"}\n" "run: {3: \"number\"} <- copy {0: \"literal\"}\n" ); } :(before "struct routine {") // Everytime a recipe runs another, we interrupt it and start running the new // recipe. When that finishes, we continue this one where we left off. // This requires maintaining a 'stack' of interrupted recipes or 'calls'. struct call { recipe_ordinal running_recipe; int running_step_index; // End call Fields call(recipe_ordinal r) { clear(r, 0); } call(recipe_ordinal r, int index) { clear(r, index); } void clear(recipe_ordinal r, int index) { running_recipe = r; running_step_index = index; // End call Constructor } ~call() { // End call Destructor } }; typedef list<call> call_stack; :(replace{} "struct routine") struct routine { call_stack calls; // End routine Fields routine(recipe_ordinal r); bool completed() const; const vector<instruction>& steps() const; }; :(code) routine::routine(recipe_ordinal r) { ++Callstack_depth; trace(Callstack_depth+1, "trace") << "new routine; incrementing callstack depth to " << Callstack_depth << end(); assert(Callstack_depth < Max_depth); calls.push_front(call(r)); // End routine Constructor } //:: now update routine's helpers //: macro versions for a slight speedup :(delete{} "int& current_step_index()") :(delete{} "recipe_ordinal currently_running_recipe()") :(delete{} "const string& current_recipe_name()") :(delete{} "const recipe& current_recipe()") :(delete{} "const instruction& current_instruction()") :(before "End Includes") #define current_call() Current_routine->calls.front() #define current_step_index() current_call().running_step_index #define currently_running_recipe() current_call().running_recipe #define current_recipe() get(Recipe, currently_running_recipe()) #define current_recipe_name() current_recipe().name #define to_instruction(call) get(Recipe, (call).running_recipe).steps.at((call).running_step_index) #define current_instruction() to_instruction(current_call()) //: function versions for debugging :(code) //? :(before "End Globals") //? bool Foo2 = false; //? :(code) //? call& current_call() { //? if (Foo2) cerr << __FUNCTION__ << '\n'; //? return Current_routine->calls.front(); //? } //? :(replace{} "int& current_step_index()") //? int& current_step_index() { //? assert(!Current_routine->calls.empty()); //? if (Foo2) cerr << __FUNCTION__ << '\n'; //? return current_call().running_step_index; //? } //? :(replace{} "recipe_ordinal currently_running_recipe()") //? recipe_ordinal currently_running_recipe() { //? assert(!Current_routine->calls.empty()); //? if (Foo2) cerr << __FUNCTION__ << '\n'; //? return current_call().running_recipe; //? } //? :(replace{} "const string& current_recipe_name()") //? const string& current_recipe_name() { //? assert(!Current_routine->calls.empty()); //? if (Foo2) cerr << __FUNCTION__ << '\n'; //? return get(Recipe, current_call().running_recipe).name; //? } //? :(replace{} "const recipe& current_recipe()") //? const recipe& current_recipe() { //? assert(!Current_routine->calls.empty()); //? if (Foo2) cerr << __FUNCTION__ << '\n'; //? return get(Recipe, current_call().running_recipe); //? } //? :(replace{} "const instruction& current_instruction()") //? const instruction& current_instruction() { //? assert(!Current_routine->calls.empty()); //? if (Foo2) cerr << __FUNCTION__ << '\n'; //? return to_instruction(current_call()); //? } //? :(code) //? const instruction& to_instruction(const call& call) { //? return get(Recipe, call.running_recipe).steps.at(call.running_step_index); //? } :(code) void dump_callstack() { if (!Current_routine) return; if (Current_routine->calls.size() <= 1) return; for (call_stack::const_iterator p = ++Current_routine->calls.begin(); p != Current_routine->calls.end(); ++p) raise << " called from " << get(Recipe, p->running_recipe).name << ": " << to_original_string(to_instruction(*p)) << '\n' << end(); } :(after "Defined Recipe Checks") // not a primitive; check that it's present in the book of recipes if (!contains_key(Recipe, inst.operation)) { raise << maybe(get(Recipe, r).name) << "undefined operation in '" << to_original_string(inst) << "'\n" << end(); break; } :(replace{} "default:" following "End Primitive Recipe Implementations") default: { if (contains_key(Recipe, current_instruction().operation)) { // error already raised in Checks above // not a primitive; look up the book of recipes ++Callstack_depth; trace(Callstack_depth+1, "trace") << "incrementing callstack depth to " << Callstack_depth << end(); assert(Callstack_depth < Max_depth); const call& caller_frame = current_call(); Current_routine->calls.push_front(call(to_instruction(caller_frame).operation)); finish_call_housekeeping(to_instruction(caller_frame), ingredients); // not done with caller write_products = false; fall_through_to_next_instruction = false; // End Non-primitive Call(caller_frame) } } :(code) void finish_call_housekeeping(const instruction& call_instruction, const vector<vector<double> >& ingredients) { // End Call Housekeeping } void test_calling_undefined_recipe_fails() { Hide_errors = true; run( "def main [\n" " foo\n" "]\n" ); CHECK_TRACE_CONTENTS( "error: main: undefined operation in 'foo'\n" ); } void test_calling_undefined_recipe_handles_missing_result() { Hide_errors = true; run( "def main [\n" " x:num <- foo\n" "]\n" ); CHECK_TRACE_CONTENTS( "error: main: undefined operation in 'x:num <- foo'\n" ); } //:: finally, we need to fix the termination conditions for the run loop :(replace{} "bool routine::completed() const") bool routine::completed() const { return calls.empty(); } :(replace{} "const vector<instruction>& routine::steps() const") const vector<instruction>& routine::steps() const { assert(!calls.empty()); return get(Recipe, calls.front().running_recipe).steps; } :(after "Running One Instruction") // when we reach the end of one call, we may reach the end of the one below // it, and the one below that, and so on while (current_step_index() >= SIZE(Current_routine->steps())) { // Falling Through End Of Recipe trace(Callstack_depth+1, "trace") << "fall-through: exiting " << current_recipe_name() << "; decrementing callstack depth from " << Callstack_depth << end(); --Callstack_depth; assert(Callstack_depth >= 0); Current_routine->calls.pop_front(); if (Current_routine->calls.empty()) goto stop_running_current_routine; // Complete Call Fallthrough // todo: fail if no products returned ++current_step_index(); } :(before "End Primitive Recipe Declarations") _DUMP_CALL_STACK, :(before "End Primitive Recipe Numbers") put(Recipe_ordinal, "$dump-call-stack", _DUMP_CALL_STACK); :(before "End Primitive Recipe Checks") case _DUMP_CALL_STACK: { break; } :(before "End Primitive Recipe Implementations") case _DUMP_CALL_STACK: { dump(Current_routine->calls); break; } :(code) void dump(const call_stack& calls) { for (call_stack::const_reverse_iterator p = calls.rbegin(); p != calls.rend(); ++p) cerr << get(Recipe, p->running_recipe).name << ":" << p->running_step_index << " -- " << to_string(to_instruction(*p)) << '\n'; }