# Code for the first few disk sectors that all programs in this directory need: # - load sectors past the first (using BIOS primitives) since only the first is available by default # - if this fails, print 'D' at top-left of screen and halt # - initialize a minimal graphics mode # - switch to 32-bit mode (giving up access to BIOS primitives) # - set up a handler for keyboard events # - jump to start of program # # To convert to a disk image, first prepare a realistically sized disk image: # dd if=/dev/zero of=disk.img count=20160 # 512-byte sectors, so 10MB # Create initial sectors from this file: # ./bootstrap run apps/hex < baremetal/boot.hex > boot.bin # Translate other sectors into a file called a.img # Load all sectors into the disk image: # cat boot.bin a.img > disk.bin # dd if=disk.bin of=disk.img conv=notrunc # To run: # qemu-system-i386 disk.img # Or: # bochs -f baremetal/boot.bochsrc # boot.bochsrc loads disk.img # # Since we start out in 16-bit mode, we need instructions SubX doesn't # support. # This file contains just lowercase hex bytes and comments. Zero # error-checking. Make liberal use of: # - comments documenting expected offsets # - size checks on the emitted file (currently: 5120 bytes) # - xxd to eyeball that offsets contain expected bytes # # Programs using this initialization: # - can't use any syscalls # - can't print text to video memory (past these boot sectors) # - must only print raw pixels (256 colors) to video memory (resolution 1024x768) # - must start executing immediately after this file (see outline below) # Outline of this file with offsets and the addresses they map to at run-time: # offset 0 (address 7c00): boot code, 16-bit mode # 80 (address 7c80) global descriptor table # a0 (address 7ca0) <== gdt_descriptor # offset e0 (address 7ce0): boot code # offset 100 (address 7d00): interrupt handler code # 1c8 (address 7dc8) <== keyboard buffer # 1f8 (address 7df8) <== idt_descriptor # 1fe (address 7dfe) boot sector marker (2 bytes) # offset 200 (address 7e00): interrupt descriptor table (256 bytes) # offset 300 (address 7f00): video mode data (256 bytes) # 328 (address 7f28) <== start of video RAM stored here # offset 400 (address 8000): keyboard mappings (2KB) # offset c00 (address 8800): bitmap font (2KB) # offset 1400 (address 9000): entrypoint for applications (don't forget to adjust survey_baremetal if this changes) ## 16-bit entry point # Upon reset, the IBM PC: # - loads the first sector (512 bytes) # from some bootable image (see the boot sector marker at the end of this file) # to the address range [0x7c00, 0x7e00) # - starts executing code at address 0x7c00 # offset 00 (address 0x7c00): # disable interrupts for this initialization fa # cli # initialize segment registers # this isn't always needed, but the recommendation is to not make assumptions b8 00 00 # ax <- 0 8e d8 # ds <- ax 8e d0 # ss <- ax 8e c0 # es <- ax 8e e0 # fs <- ax 8e e8 # gs <- ax # We don't read or write the stack before we get to 32-bit mode. No function # calls, so we don't need to initialize the stack. # 0e: # load 62 sectors from disk into addresses [0x7e00, 0xfa00) b4 02 # ah <- 2 # read sectors from disk # 10: # dl comes conveniently initialized at boot time with the index of the device being booted b5 00 # ch <- 0 # cylinder 0 b6 00 # dh <- 0 # track 0 b1 02 # cl <- 2 # second sector, 1-based b0 3e # al <- 62 # number of sectors to read # address to write sectors to = es:bx = 0x7e00, contiguous with boot segment bb 00 00 # bx <- 0 8e c3 # es <- bx bb 00 7e # bx <- 0x7e00 [label] # 20: cd 13 # int 13h, BIOS disk service 0f 82 8a 00 # jump-if-carry disk_error [label] # 26: # load 63 sectors from disk into addresses [0xfa00, 0x17800) b4 02 # ah <- 2 # read sectors from disk b5 00 # ch <- 0 # cylinder 0 b6 01 # dh <- 1 # track 1 b1 01 # cl <- 1 # first sector, 1-based b0 3f # al <- 63 # number of sectors to read # 30: # "Addressing of Buffer should guarantee that the complete buffer is inside # the given segment, i.e. ( BX + size_of_buffer ) <= 10000h." # https://en.wikipedia.org/wiki/INT_13H#INT_13h_AH=02h:_Read_Sectors_From_Drive bb 00 fa # bx <- 0xfa00 [label] 8e c3 # es <- bx bb 00 00 # bx <- 0 cd 13 # int 13h, BIOS disk service 0f 82 72 00 # jump-if-carry disk_error [label] # 3e: # reset es bb 00 00 # bx <- 0 8e c3 # es <- bx # 43: # undo the A20 hack: https://en.wikipedia.org/wiki/A20_line # this is from https://github.com/mit-pdos/xv6-public/blob/master/bootasm.S # seta20.1: e4 64 # al <- port 0x64 a8 02 # set zf if bit 1 (second-least significant) is not set 75 fa # if zf not set, goto seta20.1 (-6) b0 d1 # al <- 0xd1 e6 64 # port 0x64 <- al # 4d: # seta20.2: e4 64 # al <- port 0x64 a8 02 # set zf if bit 1 (second-least significant) is not set 75 fa # if zf not set, goto seta20.2 (-6) b0 df # al <- 0xdf e6 64 # port 0x64 <- al # 57: # adjust video mode b4 4f # ah <- 4f (VBE) b0 02 # al <- 02 (set video mode) bb 05 41 # bx <- 0x0105 (graphics 1024x768x256 # 0x4000 bit = configure linear frame buffer in Bochs emulator; hopefully this doesn't hurt anything when running natively) # fallback mode: 0x0101 (640x480x256) cd 10 # int 10h, Vesa BIOS extensions # 60: # load information for the (hopefully) current video mode # mostly just for the address to the linear frame buffer b4 4f # ah <- 4f (VBE) b0 01 # al <- 01 (get video mode) b9 07 01 # cx <- 0x0107 (mode we requested) bf 00 7f # di <- 0x7f00 (video mode info) [label] cd 10 # 6c: # switch to 32-bit mode 0f 01 16 # lgdt 00/mod/indirect 010/subop 110/rm/use-disp16 a0 7c # *gdt_descriptor [label] 0f 20 c0 # eax <- cr0 66 83 c8 01 # eax <- or 0x1 0f 22 c0 # cr0 <- eax ea e0 7c 08 00 # far jump to initialize_32bit_mode after setting cs to the record at offset 8 in the gdt (gdt_code) [label] ## GDT: 3 records of 8 bytes each # 80: # gdt_start: # gdt_null: mandatory null descriptor 00 00 00 00 00 00 00 00 # gdt_code: (offset 8 from gdt_start) ff ff # limit[0:16] 00 00 00 # base[0:24] 9a # 1/present 00/privilege 1/descriptor type = 1001b # 1/code 0/conforming 1/readable 0/accessed = 1010b cf # 1/granularity 1/32-bit 0/64-bit-segment 0/AVL = 1100b # limit[16:20] = 1111b 00 # base[24:32] # gdt_data: (offset 16 from gdt_start) ff ff # limit[0:16] 00 00 00 # base[0:24] 92 # 1/present 00/privilege 1/descriptor type = 1001b # 0/data 0/conforming 1/readable 0/accessed = 0010b cf # same as gdt_code 00 # base[24:32] # gdt_end: # padding # 98: 00 00 00 00 00 00 00 00 # a0: # gdt_descriptor: 17 00 # final index of gdt = gdt_end - gdt_start - 1 80 7c 00 00 # start = gdt_start [label] # padding # a5: 00 00 00 00 00 00 00 00 00 00 # b0: # disk_error: # print 'D' to top-left of screen to indicate disk error # *0xb8000 <- 0x0f44 # bx <- 0xb800 bb 00 b8 # ds <- bx 8e db # 11b/mod 011b/reg/ds 011b/rm/bx # al <- 'D' b0 44 # ah <- 0x0f # white on black b4 0f # bx <- 0 bb 00 00 # *ds:bx <- ax 89 07 # 00b/mod/indirect 000b/reg/ax 111b/rm/bx e9 fd ff # loop forever # padding # c1: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ## 32-bit code from this point (still some instructions not in SubX) # e0: # initialize_32bit_mode: 66 b8 10 00 # ax <- offset 16 from gdt_start 8e d8 # ds <- ax 8e d0 # ss <- ax 8e c0 # es <- ax 8e e0 # fs <- ax 8e e8 # gs <- ax # load interrupt handlers 0f 01 1d # lidt 00/mod/indirect 011/subop 101/rm32/use-disp32 f8 7d 00 00 # *idt_descriptor [label] # For now, not bothering reprogramming the IRQ to not conflict with software # exceptions. # https://wiki.osdev.org/index.php?title=8259_PIC&oldid=24650#Protected_Mode # # Interrupt 1 (keyboard) conflicts with debugger faults. We don't use a # debugger. # Reference: # https://wiki.osdev.org/Exceptions # enable keyboard IRQ (1) b0 fd # al <- 0xfd # disable mask for IRQ1 e6 21 # port 0x21 <- al # initialization is done; enable interrupts fb e9 01 13 00 00 # jump to 0x9000 [label] # padding # ff: 00 # 100: # null interrupt handler: cf # iret # padding # 101: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 # 110: # keyboard interrupt handler: # prologue fa # disable interrupts 60 # push all registers to stack # acknowledge interrupt b0 20 # al <- 0x20 e6 20 # port 0x20 <- al # read status into eax 31 c0 # eax <- xor eax; 11/direct 000/r32/eax 000/rm32/eax e4 64 # al <- port 0x64 # if (status & 0x1) == 0, return 24 01 # al <- and 0x1 3c 00 # compare al, 0 74 39 # jump to epilogue if = [label] # 120: # if keyboard buffer is full, return 31 c9 # ecx <- xor ecx; 11/direct 001/r32/ecx 001/rm32/ecx # . var index/ecx: byte 8a # copy m8 at r32 to r8 0d # 00/mod/indirect 001/r8/cl 101/rm32/use-disp32 c8 7d 00 00 # disp32 [label] # . al = *(keyboard buffer + index) 8a # copy m8 at r32 to r8 81 # 10/mod/*+disp32 000/r8/al 001/rm32/ecx d0 7d 00 00 # disp32 [label] # . if (al != 0) return 3c 00 # compare al, 0 # 130: 75 27 # jump to epilogue if != [label] # read keycode into al e4 60 # al <- port 0x60 # if (al & 0x80) a key is being lifted; return 50 # push eax 24 80 # al <- and 0x80 3c 00 # compare al, 0 58 # pop to eax (without touching flags) 75 1d # jump to epilogue if != [label] # 13c: # al <- *(keyboard normal map + eax) 8a # copy m8 at rm32 to r8 80 # 10/mod/*+disp32 000/r8/al 000/rm32/eax 00 80 00 00 # disp32 [label] # if there's no character mapping, return 3c 00 # compare al, 0 74 13 # jump to epilogue if = [label] # 146: # store al in keyboard buffer 88 # copy r8 to m8 at r32 81 # 10/mod/*+disp32 000/r8/al 001/rm32/ecx d0 7d 00 00 # disp32 [label] # 14c: # increment index fe # increment byte 05 # 00/mod/indirect 000/subop/increment 101/rm32/use-disp32 c8 7d 00 00 # disp32 [label] # clear top nibble of index (keyboard buffer is circular) 80 # and byte 25 # 00/mod/indirect 100/subop/and 101/rm32/use-disp32 c8 7d 00 00 # disp32 [label] 0f # imm8 # 159: # epilogue 61 # pop all registers fb # enable interrupts cf # iret # padding # 15c: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 # 1c8: # var keyboard circular buffer # write index: nibble # still take up 4 bytes so SubX can handle it 00 00 00 00 # 1cc: # read index: nibble # still take up 4 bytes so SubX can handle it 00 00 00 00 # 1d0: # circular buffer: byte[16] 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 # padding # 1e0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 # 1f8: # idt_descriptor: ff 00 # idt_end - idt_start - 1 00 7e 00 00 # start = idt_start [label] # 1fe: # final 2 bytes of boot sector 55 aa ## sector 2 # loaded by load_disk, not automatically on boot # offset 200 (address 0x7e00): interrupt descriptor table # 32 entries * 8 bytes each = 256 bytes (0x100) # idt_start: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 # By default, BIOS maps IRQ0-7 to interrupt vectors 8-15. # https://wiki.osdev.org/index.php?title=Interrupts&oldid=25102#Default_PC_Interrupt_Vector_Assignment # entry 8: clock 00 7d # target[0:16] = null interrupt handler [label] 08 00 # segment selector (gdt_code) 00 # unused 8e # 1/p 00/dpl 0 1110/type/32-bit-interrupt-gate 00 00 # target[16:32] # entry 9: keyboard 10 7d # target[0:16] = keyboard interrupt handler [label] 08 00 # segment selector (gdt_code) 00 # unused 8e # 1/p 00/dpl 0 1110/type/32-bit-interrupt-gate 00 00 # target[16:32] 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 # idt_end: # offset 300 (address 0x7f00): # video mode info: 00 00 # attributes 00 # winA 00 # winB # 304 00 00 # granularity 00 00 # winsize # 308 00 00 # segmentA 00 00 # segmentB # 30c 00 00 00 00 # realFctPtr (who knows) # 310 00 00 # pitch 00 00 # Xres # 314 00 00 # Yres 00 00 # Wchar Ychar # 318 00 # planes 00 # bpp 00 # banks 00 # memory_model # 31c 00 # bank_size 00 # image_pages 00 # reserved # 31f 00 00 # red_mask red_position 00 00 # green_mask green_position 00 00 # blue_mask blue_position 00 00 # rsv_mask rsv_position 00 # directcolor_attributes # 328 00 00 00 00 # physbase <== linear frame buffer # 32c # reserved for video mode info 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ## the rest of this file has data # offset 400 (address 0x8000): # translating keys to ASCII {{{ # keyboard normal map: 00 # es 1b # |<--- digits -------------->| - = bs 31 32 33 34 35 36 37 38 39 30 2d 3d 08 # offset 40f # tb q w e r t y u i o p [ ] 09 71 77 65 72 74 79 75 69 6f 70 5b 5d # offset 41c # enter 0a 00 # offset 41e # a s d f g h j k l ; ' ` \ 61 73 64 66 67 68 6a 6b 6c 3b 27 60 00 5c # offset 42c # z x c v b n m , . / * 7a 78 63 76 62 6e 6d 2c 2e 2f 00 2a # offset 438 # space 00 20 # offset 43a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 # 500: # keyboard shift map: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 # 600: # keyboard ctrl map: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 # padding (there might be more keyboard tables) # 700: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 # 800: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 # a00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 # }}} # offset c00 (address 0x8800) # Bitmaps for some ASCII characters (soon Unicode) {{{ # Part of GNU Unifont # 8px wide, 16px tall # Based on http://unifoundry.com/pub/unifont/unifont-13.0.05/font-builds/unifont-13.0.05.hex.gz # See https://en.wikipedia.org/wiki/GNU_Unifont#The_.hex_font_format # Website: http://unifoundry.com/unifont/index.html # License: http://unifoundry.com/LICENSE.txt (GPL v2) # Each line below is a bitmap for a single character. # Each byte is a bitmap for a single row of 8 pixels. # some unprintable ASCII chars 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 # 0x20 = space 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 # ! 00 00 00 00 08 08 08 08 08 08 08 00 08 08 00 00 # " 00 00 22 22 22 22 00 00 00 00 00 00 00 00 00 00 # 0x23 = '#' 00 00 00 00 12 12 12 7e 24 24 7e 48 48 48 00 00 # $ 00 00 00 00 08 3e 49 48 38 0e 09 49 3e 08 00 00 # % 00 00 00 00 31 4a 4a 34 08 08 16 29 29 46 00 00 # & 00 00 00 00 1c 22 22 14 18 29 45 42 46 39 00 00 # ' 00 00 08 08 08 08 00 00 00 00 00 00 00 00 00 00 # ( 00 00 00 04 08 08 10 10 10 10 10 10 08 08 04 00 # ) 00 00 00 20 10 10 08 08 08 08 08 08 10 10 20 00 # * 00 00 00 00 00 00 08 49 2a 1c 2a 49 08 00 00 00 # + 00 00 00 00 00 00 08 08 08 7f 08 08 08 00 00 00 # , 00 00 00 00 00 00 00 00 00 00 00 00 18 08 08 10 # - 00 00 00 00 00 00 00 00 00 3c 00 00 00 00 00 00 # . 00 00 00 00 00 00 00 00 00 00 00 00 18 18 00 00 # / 00 00 00 00 02 02 04 08 08 10 10 20 40 40 00 00 # 0x30 = '0' 00 00 00 00 18 24 42 46 4a 52 62 42 24 18 00 00 # 1 00 00 00 00 08 18 28 08 08 08 08 08 08 3e 00 00 # 2 00 00 00 00 3c 42 42 02 0c 10 20 40 40 7e 00 00 # 3 00 00 00 00 3c 42 42 02 1c 02 02 42 42 3c 00 00 # 4 00 00 00 00 04 0c 14 24 44 44 7e 04 04 04 00 00 # 5 00 00 00 00 7e 40 40 40 7c 02 02 02 42 3c 00 00 # 6 00 00 00 00 1c 20 40 40 7c 42 42 42 42 3c 00 00 # 7 00 00 00 00 7e 02 02 04 04 04 08 08 08 08 00 00 # 8 00 00 00 00 3c 42 42 42 3c 42 42 42 42 3c 00 00 # 9 00 00 00 00 3c 42 42 42 3e 02 02 02 04 38 00 00 # : 00 00 00 00 00 00 18 18 00 00 00 18 18 00 00 00 # ; 00 00 00 00 00 00 18 18 00 00 00 18 08 08 10 00 # < 00 00 00 00 00 02 04 08 10 20 10 08 04 02 00 00 # = 00 00 00 00 00 00 00 7e 00 00 00 7e 00 00 00 00 # > 00 00 00 00 00 40 20 10 08 04 08 10 20 40 00 00 # ? 00 00 00 00 3c 42 42 02 04 08 08 00 08 08 00 00 # 0x40 = @ 00 00 00 00 1c 22 4a 56 52 52 52 4e 20 1e 00 00 # A 00 00 00 00 18 24 24 42 42 7e 42 42 42 42 00 00 # B 00 00 00 00 7c 42 42 42 7c 42 42 42 42 7c 00 00 # C 00 00 00 00 3c 42 42 40 40 40 40 42 42 3c 00 00 # D 00 00 00 00 78 44 42 42 42 42 42 42 44 78 00 00 # E 00 00 00 00 7e 40 40 40 7c 40 40 40 40 7e 00 00 # F 00 00 00 00 7e 40 40 40 7c 40 40 40 40 40 00 00 # G 00 00 00 00 3c 42 42 40 40 4e 42 42 46 3a 00 00 # H 00 00 00 00 42 42 42 42 7e 42 42 42 42 42 00 00 # I 00 00 00 00 3e 08 08 08 08 08 08 08 08 3e 00 00 # J 00 00 00 00 1f 04 04 04 04 04 04 44 44 38 00 00 # K 00 00 00 00 42 44 48 50 60 60 50 48 44 42 00 00 # L 00 00 00 00 40 40 40 40 40 40 40 40 40 7e 00 00 # M 00 00 00 00 42 42 66 66 5a 5a 42 42 42 42 00 00 # N 00 00 00 00 42 62 62 52 52 4a 4a 46 46 42 00 00 # O 00 00 00 00 3c 42 42 42 42 42 42 42 42 3c 00 00 # 0x50 = P 00 00 00 00 7c 42 42 42 7c 40 40 40 40 40 00 00 # Q 00 00 00 00 3c 42 42 42 42 42 42 5a 66 3c 03 00 # R 00 00 00 00 7c 42 42 42 7c 48 44 44 42 42 00 00 # S 00 00 00 00 3c 42 42 40 30 0c 02 42 42 3c 00 00 # T 00 00 00 00 7f 08 08 08 08 08 08 08 08 08 00 00 # U 00 00 00 00 42 42 42 42 42 42 42 42 42 3c 00 00 # V 00 00 00 00 41 41 41 22 22 22 14 14 08 08 00 00 # W 00 00 00 00 42 42 42 42 5a 5a 66 66 42 42 00 00 # X 00 00 00 00 42 42 24 24 18 18 24 24 42 42 00 00 # Y 00 00 00 00 41 41 22 22 14 08 08 08 08 08 00 00 # Z 00 00 00 00 7e 02 02 04 08 10 20 40 40 7e 00 00 # [ 00 00 00 0e 08 08 08 08 08 08 08 08 08 08 0e 00 # \ 00 00 00 00 40 40 20 10 10 08 08 04 02 02 00 00 # ] 00 00 00 70 10 10 10 10 10 10 10 10 10 10 70 00 # ^ 00 00 18 24 42 00 00 00 00 00 00 00 00 00 00 00 # _ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7f 00 # 0x60 = backtick 00 20 10 08 00 00 00 00 00 00 00 00 00 00 00 00 # a 00 00 00 00 00 00 3c 42 02 3e 42 42 46 3a 00 00 # b 00 00 00 40 40 40 5c 62 42 42 42 42 62 5c 00 00 # c 00 00 00 00 00 00 3c 42 40 40 40 40 42 3c 00 00 # d 00 00 00 02 02 02 3a 46 42 42 42 42 46 3a 00 00 # e 00 00 00 00 00 00 3c 42 42 7e 40 40 42 3c 00 00 # f 00 00 00 0c 10 10 10 7c 10 10 10 10 10 10 00 00 # g 00 00 00 00 00 02 3a 44 44 44 38 20 3c 42 42 3c # h 00 00 00 40 40 40 5c 62 42 42 42 42 42 42 00 00 # i 00 00 00 08 08 00 18 08 08 08 08 08 08 3e 00 00 # j 00 00 00 04 04 00 0c 04 04 04 04 04 04 04 48 30 # k 00 00 00 40 40 40 44 48 50 60 50 48 44 42 00 00 # l 00 00 00 18 08 08 08 08 08 08 08 08 08 3e 00 00 # m 00 00 00 00 00 00 76 49 49 49 49 49 49 49 00 00 # n 00 00 00 00 00 00 5c 62 42 42 42 42 42 42 00 00 # o 00 00 00 00 00 00 3c 42 42 42 42 42 42 3c 00 00 # 0x70 = p 00 00 00 00 00 00 5c 62 42 42 42 42 62 5c 40 40 # q 00 00 00 00 00 00 3a 46 42 42 42 42 46 3a 02 02 # r 00 00 00 00 00 00 5c 62 42 40 40 40 40 40 00 00 # s 00 00 00 00 00 00 3c 42 40 30 0c 02 42 3c 00 00 # t 00 00 00 00 10 10 10 7c 10 10 10 10 10 0c 00 00 # u 00 00 00 00 00 00 42 42 42 42 42 42 46 3a 00 00 # v 00 00 00 00 00 00 42 42 42 24 24 24 18 18 00 00 # w 00 00 00 00 00 00 41 49 49 49 49 49 49 36 00 00 # x 00 00 00 00 00 00 42 42 24 18 18 24 42 42 00 00 # y 00 00 00 00 00 00 42 42 42 42 42 26 1a 02 02 3c # z 00 00 00 00 00 00 7e 02 04 08 10 20 40 7e 00 00 # { 00 00 00 0c 10 10 08 08 10 20 10 08 08 10 10 0c # | 00 00 08 08 08 08 08 08 08 08 08 08 08 08 08 08 # } 00 00 00 30 08 08 10 10 08 04 08 10 10 08 08 30 # ~ 00 00 00 31 49 46 00 00 00 00 00 00 00 00 00 00 # 0x7f = del (unused) 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 # }}} # offset 1400 (address 0x9000) # vim:ft=subx