# Code for the first few disk sectors that all programs in this directory need: # - load sectors past the first (using BIOS primitives) since only the first is available by default # - if this fails, print 'D' at top-left of screen and halt # - initialize a minimal graphics mode # - switch to 32-bit mode (giving up access to BIOS primitives) # - set up a handler for keyboard events # - jump to start of program # # To convert to a disk image, first prepare a realistically sized disk image: # dd if=/dev/zero of=disk.img count=20160 # 512-byte sectors, so 10MB # Create initial sectors from this file: # ./bootstrap run apps/hex < baremetal/boot.hex > boot.bin # Translate other sectors into a file called a.img # Load all sectors into the disk image: # cat boot.bin a.img > disk.bin # dd if=disk.bin of=disk.img conv=notrunc # To run: # qemu-system-i386 disk.img # Or: # bochs -f baremetal/boot.bochsrc # boot.bochsrc loads disk.img # # Since we start out in 16-bit mode, we need instructions SubX doesn't # support. # This file contains just lowercase hex bytes and comments. It makes liberal # use of: # - comments documenting expected offsets # - size checks on the emitted file (currently: 6144 bytes) # - xxd to eyeball that offsets contain expected bytes # # Programs using this initialization: # - can't use any syscalls # - can't print text to video memory (past these boot sectors) # - must only print raw pixels (256 colors) to video memory (resolution 1024x768) # - must start executing immediately after this file (see outline below) # # Don't panic! This file doesn't contain any loops or function calls. 80% of # it is data. One pass through less than 1KB of code (there's lots of # padding), and then we jump into a better notation. The rest of the stack # (really only in a couple of slightly higher-level places) only needs to know # a few magic constants: # Video memory: start is stored at 0x8128 # Keyboard buffer: starts at 0x8028 # Outline of this file with offsets and the addresses they map to at run-time: # -- 16-bit mode code # offset 0 (address 7c00): boot code # -- 16-bit mode data # e0 (address 7c80) global descriptor table # f8 (address 7ca0) <== gdt_descriptor # -- 32-bit mode code # offset 100 (address 7d00): boot code # 1fe (address 7dfe) boot sector marker (2 bytes) # offset 200 (address 7e00): interrupt handler code # offset 300 (address 7f00): mouse handler code # -- 32-bit mode data # offset 400 (address 8000): handler data # 410 (address 8010): keyboard handler data # 428 (address 8028) <== keyboard buffer # 480 (address 8080) <== mouse buffer # offset 500 (address 8100): video mode data (256 bytes) # 528 (address 8128) <== start of video RAM stored here # offset 600 (address 8200): interrupt descriptor table (1KB) # offset a00 (address 8600): keyboard mappings (1.5KB) # offset 1000 (address 8c00): bitmap font (2KB) # offset 1800 (address 9400): entrypoint for applications (don't forget to adjust survey_baremetal if this changes) # Other details of the current memory map: # code: first two default-sized disk tracks into [0x00007c00, 0x00017800) # stack grows down from 0x00070000 # see below # heap: [0x01000000, 0x02000000) # see baremetal/120allocate.subx # Consult https://wiki.osdev.org/Memory_Map_(x86) before modifying any of this. ## 16-bit entry point # Upon reset, the IBM PC: # - loads the first sector (512 bytes) # from some bootable image (see the boot sector marker at the end of this file) # to the address range [0x7c00, 0x7e00) # call this disk read #0 # - starts executing code at address 0x7c00 # offset 00 (address 0x7c00): # disable interrupts for this initialization fa # cli # initialize segment registers # this isn't always needed, but the recommendation is to not make assumptions b8 00 00 # ax <- 0 8e d8 # ds <- ax 8e c0 # es <- ax 8e e0 # fs <- ax 8e e8 # gs <- ax # initialize stack to 0x00070000 # We don't read or write the stack before we get to 32-bit mode, but BIOS # calls do. We need to move the stack in case BIOS initializes it to some # low address that we want to write code into. b8 00 70 # ax <- 0x7000 8e d0 # ss <- ax bc 00 00 # sp <- 0x0000 # 14: # disk read #1: load remaining sectors from first two tracks of disk into addresses [0x7e00, 0x17800) b4 02 # ah <- 2 # read sectors from disk # dl comes conveniently initialized at boot time with the index of the device being booted b5 00 # ch <- 0 # cylinder 0 b6 00 # dh <- 0 # track 0 b1 02 # cl <- 2 # second sector, 1-based b0 7d # al <- 125 # number of sectors to read # address to write sectors to = es:bx = 0x7e00, contiguous with boot segment bb 00 00 # bx <- 0 8e c3 # es <- bx bb 00 7e # bx <- 0x7e00 [label] cd 13 # int 13h, BIOS disk service 0f 82 a3 00 # jump-if-carry disk_error [label] # 2c: # undo the A20 hack: https://en.wikipedia.org/wiki/A20_line # this is from https://github.com/mit-pdos/xv6-public/blob/master/bootasm.S # seta20.1: e4 64 # al <- port 0x64 a8 02 # set zf if bit 1 (second-least significant) is not set 75 fa # if zf not set, goto seta20.1 (-6) b0 d1 # al <- 0xd1 e6 64 # port 0x64 <- al # 36: # seta20.2: e4 64 # al <- port 0x64 a8 02 # set zf if bit 1 (second-least significant) is not set 75 fa # if zf not set, goto seta20.2 (-6) b0 df # al <- 0xdf e6 64 # port 0x64 <- al # 40: # adjust video mode b4 4f # ah <- 4f (VBE) b0 02 # al <- 02 (set video mode) bb 05 41 # bx <- 0x0105 (graphics 1024x768x256 # 0x4000 bit = configure linear frame buffer in Bochs emulator; hopefully this doesn't hurt anything when running natively) # fallback mode: 0x0101 (640x480x256) cd 10 # int 10h, Vesa BIOS extensions # 49: # load information for the (hopefully) current video mode # mostly just for the address to the linear frame buffer b4 4f # ah <- 4f (VBE) b0 01 # al <- 01 (get video mode) b9 07 01 # cx <- 0x0107 (mode we requested) bf 00 81 # di <- 0x7f00 (video mode info) [label] cd 10 # 55: # switch to 32-bit mode 0f 01 16 # lgdt 00/mod/indirect 010/subop 110/rm/use-disp16 f8 7c # *gdt_descriptor [label] 0f 20 c0 # eax <- cr0 66 83 c8 01 # eax <- or 0x1 0f 22 c0 # cr0 <- eax ea 00 7d 08 00 # far jump to initialize_32bit_mode after setting cs to the record at offset 8 in the gdt (gdt_code) [label] # padding # 69: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 # cf: # disk_error: # print 'D' to top-left of screen to indicate disk error # *0xb8000 <- 0x0f44 # bx <- 0xb800 bb 00 b8 # ds <- bx 8e db # 11b/mod 011b/reg/ds 011b/rm/bx # al <- 'D' b0 44 # ah <- 0x0f # white on black b4 0f # bx <- 0 bb 00 00 # *ds:bx <- ax 89 07 # 00b/mod/indirect 000b/reg/ax 111b/rm/bx e9 fd ff # loop forever ## GDT: 3 records of 8 bytes each # e0: # gdt_start: # gdt_null: mandatory null descriptor 00 00 00 00 00 00 00 00 # gdt_code: (offset 8 from gdt_start) ff ff # limit[0:16] 00 00 00 # base[0:24] 9a # 1/present 00/privilege 1/descriptor type = 1001b # 1/code 0/conforming 1/readable 0/accessed = 1010b cf # 1/granularity 1/32-bit 0/64-bit-segment 0/AVL = 1100b # limit[16:20] = 1111b 00 # base[24:32] # gdt_data: (offset 16 from gdt_start) ff ff # limit[0:16] 00 00 00 # base[0:24] 92 # 1/present 00/privilege 1/descriptor type = 1001b # 0/data 0/conforming 1/readable 0/accessed = 0010b cf # same as gdt_code 00 # base[24:32] # gdt_end: # f8: # gdt_descriptor: 17 00 # final index of gdt = gdt_end - gdt_start - 1 e0 7c 00 00 # start = gdt_start [label] # padding # fe: 00 00 ## 32-bit code from this point (still some instructions not in SubX) # offset 100 (address 0x7d00): # initialize_32bit_mode: 66 b8 10 00 # ax <- offset 16 from gdt_start 8e d8 # ds <- ax 8e d0 # ss <- ax 8e c0 # es <- ax 8e e0 # fs <- ax 8e e8 # gs <- ax # 10e: bc 00 00 07 00 # esp <- 0x00070000 # 113: # load interrupt handlers 0f 01 1d # lidt 00/mod/indirect 011/subop 101/rm32/use-disp32 00 80 00 00 # *idt_descriptor [label] # For now, not bothering reprogramming the IRQ to not conflict with software # exceptions. # https://wiki.osdev.org/index.php?title=8259_PIC&oldid=24650#Protected_Mode # # Interrupt 1 (keyboard) conflicts with debugger faults. We don't use a # debugger. # Interrupt 12 (mouse) conflicts with stack segment faults. We don't use a # separate stack segment. # Reference: # https://wiki.osdev.org/Exceptions # 11a: # enable keyboard IRQ (1) b0 fd # al <- 0xfd # disable mask for IRQ1 e6 21 # port 0x21 <- al # 11e: # initialize PS/2 mouse {{{ # https://forum.osdev.org/viewtopic.php?t=10247 # A # wait for signal { e4 64 # al <- port 0x64 a8 02 # set zf if bit 1 (second-least significant) is not set 75 fa # loop (-6) if bit 1 is set # } # port 0x64 <- 0xa8 b0 a8 e6 64 # 128: # B # wait for signal { e4 64 # al <- port 0x64 a8 02 # set zf if bit 1 (second-least significant) is not set 75 fa # loop (-6) if bit 1 is set # } # port 0x64 <- 0x20 b0 20 e6 64 # 132: # C # wait for data { e4 64 # al <- port 0x64 a8 01 # set zf if bit 0 (least significant) is not set 74 fa # loop (-6) if bit 0 is not set # } # cl <- port 0x60 e4 60 # al <- port 0x60 88 # copy r8 to rm8 c1 # 11/mod/direct 000/r8/al 001/rm8/cl # 13c: # cl |= 2 80 c9 # 11/mod/direct 001/subop/or 001/rm8/cl 02 # imm8 # 13f: # D # wait for signal { e4 64 # al <- port 0x64 a8 02 # set zf if bit 1 (second-least significant) is not set 75 fa # loop (-6) if bit 1 is set # } # port 0x64 <- 0x60 b0 60 e6 64 # 149: # E # wait for signal { e4 64 # al <- port 0x64 a8 02 # set zf if bit 1 (second-least significant) is not set 75 fa # loop (-6) if bit 1 is set # } # port 0x60 <- cl 8a # copy rm8 to r8 c1 # 11/mod/direct 000/r8/al 001/rm8/cl e6 60 # 153: # F # wait for signal { e4 64 # al <- port 0x64 a8 02 # set zf if bit 1 (second-least significant) is not set 75 fa # loop (-6) if bit 1 is set # } # port 0x64 <- 0xd4 b0 d4 e6 64 # 15d: # G # wait for signal { e4 64 # al <- port 0x64 a8 02 # set zf if bit 1 (second-least significant) is not set 75 fa # loop (-6) if bit 1 is set # } # port 0x64 <- 0xf6 b0 f6 e6 64 # 167: # H: acknowledge # wait for data { e4 64 # al <- port 0x64 # sometimes you should check the result, sometimes you shouldn't 00 00 00 00 #? a8 01 # set zf if bit 0 (least significant) is not set #? 74 fa # loop (-6) if bit 0 is not set # } e4 60 # al <- port 0x60 # 16f: # I # wait for signal { e4 64 # al <- port 0x64 a8 02 # set zf if bit 1 (second-least significant) is not set 75 fa # loop (-6) if bit 1 is set # } # port 0x64 <- 0xd4 b0 d4 e6 64 # 179: # J # wait for signal { e4 64 # al <- port 0x64 a8 02 # set zf if bit 1 (second-least significant) is not set 75 fa # loop (-6) if bit 1 is set # } # port 0x64 <- 0xf4 b0 f4 e6 64 # 183: # K: acknowledge # wait for data { e4 64 # al <- port 0x64 # sometimes you should check the result, sometimes you shouldn't 00 00 00 00 #? a8 01 # set zf if bit 0 (least significant) is not set #? 74 fa # loop (-6) if bit 0 is not set # } e4 60 # al <- port 0x60 # }}} # 18b: # enable mouse IRQ (12, which is 4 in PIC2) b0 ef # al <- 0xef # disable mask for IRQ4 e6 a1 # port 0xa1 <- al # 18f: # initialization is done; enable interrupts fb e9 6b 16 00 00 # jump to 0x9400 [label] # padding # 195: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 # 1fe: # final 2 bytes of boot sector 55 aa ## sector 2 onwards loaded by load_disk, not automatically on boot # offset 200 (address 0x7e00): # null interrupt handler: cf # iret # padding # 201: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 # 210: # keyboard interrupt handler: # Needs to be here because we don't have a way yet to stitch addresses of # arbitrary SubX functions. # prologue fa # disable interrupts 60 # push all registers to stack # acknowledge interrupt b0 20 # al <- 0x20 e6 20 # port 0x20 <- al # read status into eax 31 c0 # eax <- xor eax; 11/direct 000/r32/eax 000/rm32/eax e4 64 # al <- port 0x64 # if (status & 0x1) == 0, return 24 01 # al <- and 0x1 3c 00 # compare al, 0 74 89 # jump to epilogue if = [label] # 220: # - if keyboard buffer is full, return 31 c9 # ecx <- xor ecx; 11/direct 001/r32/ecx 001/rm32/ecx # var index/ecx: byte 8a # copy m8 at r32 to r8 0d # 00/mod/indirect 001/r8/cl 101/rm32/use-disp32 28 80 00 00 # disp32 [label] # al = *(keyboard buffer + index) 8a # copy m8 at r32 to r8 81 # 10/mod/*+disp32 000/r8/al 001/rm32/ecx 30 80 00 00 # disp32 [label] # if (al != 0) return 3c 00 # compare al, 0 # 230: 75 77 # jump to epilogue if != [label] # - read keycode e4 60 # al <- port 0x60 # 234: # - key released # if (al == 0xaa) shift = false # left shift is being lifted 3c aa # compare al, 0xaa 75 0a # jump to $1 if != [label] # 238: # *shift = 0 c7 # copy imm32 to rm32 05 # 00/mod/indirect 000/subop/copy 101/rm32/use-disp32 10 80 00 00 # disp32 [label] 00 00 00 00 # imm32 # 242: # $1: # if (al == 0xb6) shift = false # right shift is being lifted 3c b6 # compare al, 0xb6 # 244: 75 0a # jump to $1 if != [label] # *shift = 0 c7 # copy imm32 to rm32 05 # 00/mod/indirect 000/subop/copy 101/rm32/use-disp32 10 80 00 00 # disp32 [label] 00 00 00 00 # imm32 # 250: # $2: # if (al & 0x80) a key is being lifted; return 50 # push eax 24 80 # al <- and 0x80 3c 00 # compare al, 0 58 # pop to eax (without touching flags) 75 51 # jump to epilogue if != [label] # 258: # - key pressed # if (al == 0x2a) shift = true, return # left shift pressed 3c 2a # compare al, 0x2a 75 0c # jump to $3 if != [label] # *shift = 1 c7 # copy imm32 to rm32 05 # 00/mod/indirect 000/subop/copy 101/rm32/use-disp32 10 80 00 00 # disp32 [label] 01 00 00 00 # imm32 eb 41 # jump to epilogue [label] # 268: # $3: # if (al == 0x36) shift = true, return # right shift pressed 3c 36 # compare al, 0x36 75 0c # jump to $4 if != [label] # *shift = 1 c7 # copy imm32 to rm32 05 # 00/mod/indirect 000/subop/copy 101/rm32/use-disp32 10 80 00 00 # disp32 [label] 01 00 00 00 # imm32 eb 31 # jump to epilogue [label] # $4: # 278: # - convert key to character # if (shift) use keyboard normal map 81 # operate on rm32 and imm32 3d # 00/mod/indirect 111/subop/compare 101/rm32/use-disp32 10 80 00 00 # disp32 = shift [label] 00 00 00 00 # imm32 74 08 # jump to $5 if = [label] # 284: # otherwise use keyboard shift map # al <- *(keyboard shift map + eax) 8a # copy m8 at rm32 to r8 80 # 10/mod/*+disp32 000/r8/al 000/rm32/eax 00 87 00 00 # disp32 [label] eb 06 # jump to $6 [label] # $5: # 28c: # al <- *(keyboard normal map + eax) 8a # copy m8 at rm32 to r8 80 # 10/mod/*+disp32 000/r8/al 000/rm32/eax 00 86 00 00 # disp32 [label] # $6: # 292: # - if there's no character mapping, return 3c 00 # compare al, 0 74 13 # jump to epilogue if = [label] # 296: # - store al in keyboard buffer 88 # copy r8 to m8 at r32 81 # 10/mod/*+disp32 000/r8/al 001/rm32/ecx 30 80 00 00 # disp32 [label] # 29c: # increment index fe # increment byte 05 # 00/mod/indirect 000/subop/increment 101/rm32/use-disp32 28 80 00 00 # disp32 [label] # 2a2: # clear top nibble of index (keyboard buffer is circular) 80 # and byte 25 # 00/mod/indirect 100/subop/and 101/rm32/use-disp32 28 80 00 00 # disp32 [label] 0f # imm8 # 2a9: # epilogue 61 # pop all registers fb # enable interrupts cf # iret # padding # 2ac: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 # 300: # mouse interrupt handler: # Needs to be here because we don't have a way yet to stitch addresses of # arbitrary SubX functions. # https://wiki.osdev.org/Mouse_Input # https://forum.osdev.org/viewtopic.php?t=10247 #? # prologue #? fa # disable interrupts #? #? 60 # push all registers to stack #? #? # light up top-left of screen #? #? # . eax = top-left #? #? 8b # copy rm32 to r32 #? #? 05 # 00/mod/indirect 000/r32/eax 101/rm32/use-disp32 #? #? 28 7f 00 00 # disp32 [label] #? #? # . color top-left red #? #? c7 # copy imm32 to rm32 #? #? 38 # 00/mod/indirect 111/subop/copy 000/rm32/eax #? #? 04 00 00 00 # imm32 (color) #? #? # epilogue #? #? 61 # pop all registers #? fb # enable interrupts cf # iret 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 # offset 400 (address 0x8000): interrupt handler data # idt_descriptor: ff 03 # idt_end - idt_start - 1 00 82 00 00 # start = idt_start [label] # padding # 406: 00 00 00 00 00 00 00 00 00 00 # 410: # var shift: boolean 00 00 00 00 # padding # 414: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 # 428: # var keyboard circular buffer # write index: nibble # still take up 4 bytes so SubX can handle it 00 00 00 00 # 42c: # read index: nibble # still take up 4 bytes so SubX can handle it 00 00 00 00 # 430: # circular buffer: byte[16] 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 # padding # 440: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 # 480: # var mouse-x: int (in pixels) 00 00 00 00 # var mouse-y: int 00 00 00 00 # 488: # var stashed-pixels: (array byte 4) 00 00 00 00 00 00 00 00 # 490: # type click-event = struct { int32 x; int32 y; } (single mouse button for now) # var mouse-buffer: (array click-event 2) 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 # padding # 4a0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 # offset 500 (address 0x8100): # video mode info {{{ 00 00 # attributes 00 # winA 00 # winB # 04 00 00 # granularity 00 00 # winsize # 08 00 00 # segmentA 00 00 # segmentB # 0c 00 00 00 00 # realFctPtr (who knows) # 10 00 00 # pitch 00 00 # Xres # 14 00 00 # Yres 00 00 # Wchar Ychar # 18 00 # planes 00 # bpp 00 # banks 00 # memory_model # 1c 00 # bank_size 00 # image_pages 00 # reserved # 1f 00 00 # red_mask red_position 00 00 # green_mask green_position 00 00 # blue_mask blue_position 00 00 # rsv_mask rsv_position 00 # directcolor_attributes # 28 00 00 00 00 # physbase <== linear frame buffer # 2c # reserved for video mode info 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 # }}} # offset 600 (address 0x8200): # interrupt descriptor table {{{ # 128 entries * 8 bytes each = 1024 bytes (0x400) # idt_start: # entry 0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 # By default, BIOS maps IRQ0-7 to interrupt vectors 8-15. # https://wiki.osdev.org/index.php?title=Interrupts&oldid=25102#Default_PC_Interrupt_Vector_Assignment # entry 8: clock 00 7e # target[0:16] = null interrupt handler [label] 08 00 # segment selector (gdt_code) 00 # unused 8e # 1/p 00/dpl 0 1110/type/32-bit-interrupt-gate 00 00 # target[16:32] # entry 9: keyboard 10 7e # target[0:16] = keyboard interrupt handler [label] 08 00 # segment selector (gdt_code) 00 # unused 8e # 1/p 00/dpl 0 1110/type/32-bit-interrupt-gate 00 00 # target[16:32] 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 # 500: # entry 0x20 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 # 600: # entry 0x40 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 # 700: # entry 0x60 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 # entry 0x70 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 #? # entry 0x74: mouse #? 00 7f # target[0:16] = mouse interrupt handler [label] #? 08 00 # segment selector (gdt_code) #? 00 # unused #? 8e # 1/p 00/dpl 0 1110/type/32-bit-interrupt-gate #? 00 00 # target[16:32] 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 # idt_end: # }}} ## the rest of this file has data # offset a00 (address 0x8600): # translating keys to ASCII {{{ # keyboard normal map: 00 # es 1b # |<--- digits -------------->| - = backspace 31 32 33 34 35 36 37 38 39 30 2d 3d 08 # 0f # tab q w e r t y u i o p [ ] 09 71 77 65 72 74 79 75 69 6f 70 5b 5d # 1c # enter 0a 00 # 1e # a s d f g h j k l ; ' ` \ 61 73 64 66 67 68 6a 6b 6c 3b 27 60 00 5c # ^ left shift # 2c # z x c v b n m , . / * 7a 78 63 76 62 6e 6d 2c 2e 2f 00 2a # ^ right shift # 38 # space 00 20 # 3a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 # numeric keypad would start here, but isn't implemented 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 # offset b00: # keyboard shift map: 00 # es 1b # ! @ # $ % ^ & * ( ) _ + backspace 21 40 23 24 25 53 26 2a 28 29 5f 2b 08 # 0f # tab Q W E R T Y U I O P { } 09 51 57 55 52 54 59 55 59 5f 50 7b 7d # 1c # enter 0a 00 # 1e # A S D F G H J K L : " ~ | 41 53 44 46 47 48 4a 4b 4c 3a 22 7e 00 7c # 2c # Z X C V B N M < > ? * 5a 58 43 56 42 4e 4d 3c 3e 3f 00 2a # 38 # space 00 20 # 3a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 # numeric keypad would start here, but isn't implemented 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 # c00: # keyboard ctrl map: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 # padding (there might be more keyboard tables) # d00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 # e00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 # f00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 # }}} # offset 1000 (address 0x8c00) # Bitmaps for some ASCII characters (soon Unicode) {{{ # Part of GNU Unifont # 8px wide, 16px tall # Based on http://unifoundry.com/pub/unifont/unifont-13.0.05/font-builds/unifont-13.0.05.hex.gz # See https://en.wikipedia.org/wiki/GNU_Unifont#The_.hex_font_format # Website: http://unifoundry.com/unifont/index.html # License: http://unifoundry.com/LICENSE.txt (GPL v2) # Each line below is a bitmap for a single character. # Each byte is a bitmap for a single row of 8 pixels. # some unprintable ASCII chars 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 # 0x20 = space 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 # ! 00 00 00 00 08 08 08 08 08 08 08 00 08 08 00 00 # " 00 00 22 22 22 22 00 00 00 00 00 00 00 00 00 00 # 0x23 = '#' 00 00 00 00 12 12 12 7e 24 24 7e 48 48 48 00 00 # $ 00 00 00 00 08 3e 49 48 38 0e 09 49 3e 08 00 00 # % 00 00 00 00 31 4a 4a 34 08 08 16 29 29 46 00 00 # & 00 00 00 00 1c 22 22 14 18 29 45 42 46 39 00 00 # ' 00 00 08 08 08 08 00 00 00 00 00 00 00 00 00 00 # ( 00 00 00 04 08 08 10 10 10 10 10 10 08 08 04 00 # ) 00 00 00 20 10 10 08 08 08 08 08 08 10 10 20 00 # * 00 00 00 00 00 00 08 49 2a 1c 2a 49 08 00 00 00 # + 00 00 00 00 00 00 08 08 08 7f 08 08 08 00 00 00 # , 00 00 00 00 00 00 00 00 00 00 00 00 18 08 08 10 # - 00 00 00 00 00 00 00 00 00 3c 00 00 00 00 00 00 # . 00 00 00 00 00 00 00 00 00 00 00 00 18 18 00 00 # / 00 00 00 00 02 02 04 08 08 10 10 20 40 40 00 00 # 0x30 = '0' 00 00 00 00 18 24 42 46 4a 52 62 42 24 18 00 00 # 1 00 00 00 00 08 18 28 08 08 08 08 08 08 3e 00 00 # 2 00 00 00 00 3c 42 42 02 0c 10 20 40 40 7e 00 00 # 3 00 00 00 00 3c 42 42 02 1c 02 02 42 42 3c 00 00 # 4 00 00 00 00 04 0c 14 24 44 44 7e 04 04 04 00 00 # 5 00 00 00 00 7e 40 40 40 7c 02 02 02 42 3c 00 00 # 6 00 00 00 00 1c 20 40 40 7c 42 42 42 42 3c 00 00 # 7 00 00 00 00 7e 02 02 04 04 04 08 08 08 08 00 00 # 8 00 00 00 00 3c 42 42 42 3c 42 42 42 42 3c 00 00 # 9 00 00 00 00 3c 42 42 42 3e 02 02 02 04 38 00 00 # : 00 00 00 00 00 00 18 18 00 00 00 18 18 00 00 00 # ; 00 00 00 00 00 00 18 18 00 00 00 18 08 08 10 00 # < 00 00 00 00 00 02 04 08 10 20 10 08 04 02 00 00 # = 00 00 00 00 00 00 00 7e 00 00 00 7e 00 00 00 00 # > 00 00 00 00 00 40 20 10 08 04 08 10 20 40 00 00 # ? 00 00 00 00 3c 42 42 02 04 08 08 00 08 08 00 00 # 0x40 = @ 00 00 00 00 1c 22 4a 56 52 52 52 4e 20 1e 00 00 # A 00 00 00 00 18 24 24 42 42 7e 42 42 42 42 00 00 # B 00 00 00 00 7c 42 42 42 7c 42 42 42 42 7c 00 00 # C 00 00 00 00 3c 42 42 40 40 40 40 42 42 3c 00 00 # D 00 00 00 00 78 44 42 42 42 42 42 42 44 78 00 00 # E 00 00 00 00 7e 40 40 40 7c 40 40 40 40 7e 00 00 # F 00 00 00 00 7e 40 40 40 7c 40 40 40 40 40 00 00 # G 00 00 00 00 3c 42 42 40 40 4e 42 42 46 3a 00 00 # H 00 00 00 00 42 42 42 42 7e 42 42 42 42 42 00 00 # I 00 00 00 00 3e 08 08 08 08 08 08 08 08 3e 00 00 # J 00 00 00 00 1f 04 04 04 04 04 04 44 44 38 00 00 # K 00 00 00 00 42 44 48 50 60 60 50 48 44 42 00 00 # L 00 00 00 00 40 40 40 40 40 40 40 40 40 7e 00 00 # M 00 00 00 00 42 42 66 66 5a 5a 42 42 42 42 00 00 # N 00 00 00 00 42 62 62 52 52 4a 4a 46 46 42 00 00 # O 00 00 00 00 3c 42 42 42 42 42 42 42 42 3c 00 00 # 0x50 = P 00 00 00 00 7c 42 42 42 7c 40 40 40 40 40 00 00 # Q 00 00 00 00 3c 42 42 42 42 42 42 5a 66 3c 03 00 # R 00 00 00 00 7c 42 42 42 7c 48 44 44 42 42 00 00 # S 00 00 00 00 3c 42 42 40 30 0c 02 42 42 3c 00 00 # T 00 00 00 00 7f 08 08 08 08 08 08 08 08 08 00 00 # U 00 00 00 00 42 42 42 42 42 42 42 42 42 3c 00 00 # V 00 00 00 00 41 41 41 22 22 22 14 14 08 08 00 00 # W 00 00 00 00 42 42 42 42 5a 5a 66 66 42 42 00 00 # X 00 00 00 00 42 42 24 24 18 18 24 24 42 42 00 00 # Y 00 00 00 00 41 41 22 22 14 08 08 08 08 08 00 00 # Z 00 00 00 00 7e 02 02 04 08 10 20 40 40 7e 00 00 # [ 00 00 00 0e 08 08 08 08 08 08 08 08 08 08 0e 00 # \ 00 00 00 00 40 40 20 10 10 08 08 04 02 02 00 00 # ] 00 00 00 70 10 10 10 10 10 10 10 10 10 10 70 00 # ^ 00 00 18 24 42 00 00 00 00 00 00 00 00 00 00 00 # _ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7f 00 # 0x60 = backtick 00 20 10 08 00 00 00 00 00 00 00 00 00 00 00 00 # a 00 00 00 00 00 00 3c 42 02 3e 42 42 46 3a 00 00 # b 00 00 00 40 40 40 5c 62 42 42 42 42 62 5c 00 00 # c 00 00 00 00 00 00 3c 42 40 40 40 40 42 3c 00 00 # d 00 00 00 02 02 02 3a 46 42 42 42 42 46 3a 00 00 # e 00 00 00 00 00 00 3c 42 42 7e 40 40 42 3c 00 00 # f 00 00 00 0c 10 10 10 7c 10 10 10 10 10 10 00 00 # g 00 00 00 00 00 02 3a 44 44 44 38 20 3c 42 42 3c # h 00 00 00 40 40 40 5c 62 42 42 42 42 42 42 00 00 # i 00 00 00 08 08 00 18 08 08 08 08 08 08 3e 00 00 # j 00 00 00 04 04 00 0c 04 04 04 04 04 04 04 48 30 # k 00 00 00 40 40 40 44 48 50 60 50 48 44 42 00 00 # l 00 00 00 18 08 08 08 08 08 08 08 08 08 3e 00 00 # m 00 00 00 00 00 00 76 49 49 49 49 49 49 49 00 00 # n 00 00 00 00 00 00 5c 62 42 42 42 42 42 42 00 00 # o 00 00 00 00 00 00 3c 42 42 42 42 42 42 3c 00 00 # 0x70 = p 00 00 00 00 00 00 5c 62 42 42 42 42 62 5c 40 40 # q 00 00 00 00 00 00 3a 46 42 42 42 42 46 3a 02 02 # r 00 00 00 00 00 00 5c 62 42 40 40 40 40 40 00 00 # s 00 00 00 00 00 00 3c 42 40 30 0c 02 42 3c 00 00 # t 00 00 00 00 10 10 10 7c 10 10 10 10 10 0c 00 00 # u 00 00 00 00 00 00 42 42 42 42 42 42 46 3a 00 00 # v 00 00 00 00 00 00 42 42 42 24 24 24 18 18 00 00 # w 00 00 00 00 00 00 41 49 49 49 49 49 49 36 00 00 # x 00 00 00 00 00 00 42 42 24 18 18 24 42 42 00 00 # y 00 00 00 00 00 00 42 42 42 42 42 26 1a 02 02 3c # z 00 00 00 00 00 00 7e 02 04 08 10 20 40 7e 00 00 # { 00 00 00 0c 10 10 08 08 10 20 10 08 08 10 10 0c # | 00 00 08 08 08 08 08 08 08 08 08 08 08 08 08 08 # } 00 00 00 30 08 08 10 10 08 04 08 10 10 08 08 30 # ~ 00 00 00 31 49 46 00 00 00 00 00 00 00 00 00 00 # 0x7f = del (unused) 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 # }}} # offset 1800 (address 0x9400) # vim:ft=subx