:(scenarios run) :(scenario copy_literal) recipe main [ 1:integer <- copy 23:literal ] +run: instruction main/0 +run: ingredient 0 is 23 +mem: storing in location 1 :(scenario copy) recipe main [ 1:integer <- copy 23:literal 2:integer <- copy 1:integer ] +run: instruction main/1 +run: ingredient 0 is 1 +mem: location 1 is 23 +mem: storing in location 2 :(before "End Types") // Book-keeping while running a recipe. //: Later layers will change this. struct routine { recipe_number running_recipe; size_t running_at; routine(recipe_number r) :running_recipe(r), running_at(0) {} }; :(code) void run(recipe_number r) { run(routine(r)); } void run(routine rr) { while (!done(rr)) { vector& instructions = steps(rr); size_t& pc = running_at(rr); // Running one instruction. trace("run") << "instruction " << recipe_name(rr) << '/' << pc; switch (instructions[pc].operation) { // Primitive Recipe Implementations. case COPY: { trace("run") << "ingredient 0 is " << instructions[pc].ingredients[0].name; vector data = read_memory(instructions[pc].ingredients[0]); write_memory(instructions[pc].products[0], data); break; } // End Primitive Recipe Implementations. default: { cout << "not a primitive op: " << instructions[pc].operation << '\n'; } } ++pc; } } //: Some helpers. //: We'll need to override these later as we change the definition of routine. //: Important that they return referrences into the routine. inline size_t& running_at(routine& rr) { return rr.running_at; } inline string recipe_name(routine& rr) { return Recipe[rr.running_recipe].name; } inline vector& steps(routine& rr) { return Recipe[rr.running_recipe].steps; } inline bool done(routine& rr) { return running_at(rr) >= steps(rr).size(); } :(before "End Main") if (argc > 1) { setup(); for (int i = 1; i < argc; ++i) { ifstream fin(argv[i]); while (!fin.eof()) add_recipe(fin); fin.close(); } recipe_number r = Recipe_number[string("main")]; if (r) run(r); dump_memory(); } //: helper for tests :(before "End Globals") vector recipes_added_by_test; :(code) void run(string form) { vector tmp = add_recipes(form); recipes_added_by_test.insert(recipes_added_by_test.end(), tmp.begin(), tmp.end()); run(recipes_added_by_test.front()); } :(before "End Setup") for (size_t i = 0; i < recipes_added_by_test.size(); ++i) { Recipe_number.erase(Recipe[recipes_added_by_test[i]].name); Recipe.erase(recipes_added_by_test[i]); } recipes_added_by_test.clear(); :(code) vector read_memory(reagent x) { //? cout << "read_memory: " << x.to_string() << '\n'; //? 1 vector result; if (x.types[0] == 0) { // literal result.push_back(to_int(x.name)); return result; } int base = to_int(x.name); for (size_t offset = 0; offset < Type[x.types[0]].size; ++offset) { int val = Memory[base+offset]; trace("mem") << "location " << base+offset << " is " << val; result.push_back(val); } return result; } void write_memory(reagent x, vector data) { int base = to_int(x.name); size_t size = size_of(x); if (size != data.size()) raise << "size mismatch in storing to " << x.to_string(); for (size_t offset = 0; offset < size; ++offset) { trace("mem") << "storing in location " << base+offset; Memory[base+offset] = data[offset]; } } :(code) int to_int(string n) { char* end = NULL; int result = strtol(n.c_str(), &end, /*any base*/0); assert(*end == '\0'); return result; } size_t size_of(reagent r) { type_info t = Type[r.types[0]]; if (!t.is_record && !t.is_array) return t.size; return t.size; // TODO }