// So far the recipes we define can't run each other. Let's change that. :(scenario "calling_recipe") recipe main [ f ] recipe f [ 3:integer <- add 2:literal, 2:literal ] +mem: storing in location 3 :(before "struct routine {") // Everytime a recipe runs another, we interrupt it and start running the new // recipe. When that finishes, we continue this one where we left off. // This requires maintaining a 'stack' of interrupted recipes or 'calls'. struct call { recipe_number running_recipe; size_t pc; // End Call Fields call(recipe_number r) :running_recipe(r), pc(0) {} }; typedef stack call_stack; :(replace{} "struct routine") struct routine { call_stack calls; routine(recipe_number r) { calls.push(call(r)); } }; :(replace{} "inline size_t& running_at(routine& rr)") inline size_t& running_at(routine& rr) { return rr.calls.top().pc; } :(replace{} "inline string recipe_name(routine& rr)") inline string recipe_name(routine& rr) { return Recipe[rr.calls.top().running_recipe].name; } :(replace{} "inline vector& steps(routine& rr)") inline vector& steps(routine& rr) { return Recipe[rr.calls.top().running_recipe].steps; } :(replace{} "default:" following "End Primitive Recipe Implementations.") default: { // not a primitive; try to look for a matching recipe if (Recipe.find(instructions[pc].operation) == Recipe.end()) { raise << "undefined operation " << instructions[pc].operation << '\n'; break; } rr.calls.push(call(instructions[pc].operation)); continue; // not done with caller; don't increment pc } :(replace{} "inline bool done(routine& rr)") inline bool done(routine& rr) { return rr.calls.empty(); } :(before "Running one instruction.") // when we reach the end of one call, we may reach the end of the one below // it, and the one below that, and so on while (running_at(rr) >= steps(rr).size()) { rr.calls.pop(); if (rr.calls.empty()) return; // todo: no results returned warning ++running_at(rr); }