//: A simple memory allocator to create space for new variables at runtime. :(scenarios run) :(scenario new) # call new two times with identical arguments; you should get back different results recipe main [ 1:address:integer/raw <- new integer:type 2:address:integer/raw <- new integer:type 3:boolean/raw <- equal 1:address:integer/raw, 2:address:integer/raw ] +mem: storing 0 in location 3 :(before "End Globals") size_t Memory_allocated_until = 1000; size_t Initial_memory_per_routine = 100000; :(before "End Setup") Memory_allocated_until = 1000; Initial_memory_per_routine = 100000; :(before "End routine Fields") size_t alloc; :(replace{} "routine::routine(recipe_number r)") routine::routine(recipe_number r) :alloc(Memory_allocated_until) { alloc = Memory_allocated_until; Memory_allocated_until += Initial_memory_per_routine; calls.push(call(r)); } //:: First handle 'type' operands. :(before "End Mu Types Initialization") Type_number["type"] = 0; :(after "Per-recipe Transforms") // replace type names with type_numbers if (inst.operation == Recipe_number["new"]) { // first arg must be of type 'type' assert(inst.ingredients.size() >= 1); //? cout << inst.ingredients[0].to_string() << '\n'; //? 1 assert(isa_literal(inst.ingredients[0])); if (inst.ingredients[0].properties[0].second[0] == "type") { inst.ingredients[0].set_value(Type_number[inst.ingredients[0].name]); } trace("new") << inst.ingredients[0].name << " -> " << inst.ingredients[0].value; } //:: Now implement the primitive recipe. :(before "End Primitive Recipe Declarations") NEW, :(before "End Primitive Recipe Numbers") Recipe_number["new"] = NEW; :(before "End Primitive Recipe Implementations") case NEW: { vector result; trace("mem") << "new alloc: " << Current_routine->alloc; result.push_back(Current_routine->alloc); write_memory(current_instruction().products[0], result); vector types; types.push_back(current_instruction().ingredients[0].value); if (current_instruction().ingredients.size() > 1) { // array vector capacity = read_memory(current_instruction().ingredients[1]); trace("mem") << "array size is " << capacity[0]; Memory[Current_routine->alloc] = capacity[0]; Current_routine->alloc += capacity[0]*size_of(types); } else { // scalar Current_routine->alloc += size_of(types); } break; } :(scenario new_array) recipe main [ 1:address:array:integer/raw <- new integer:type, 5:literal 2:address:integer/raw <- new integer:type 3:integer/raw <- subtract 2:address:integer/raw, 1:address:array:integer/raw ] +run: instruction main/0 +mem: array size is 5 +run: instruction main/1 +run: instruction main/2 +mem: storing 5 in location 3 //:: Next, extend 'new' to handle a string literal argument. :(scenario new_string) recipe main [ 1:address:array:character <- new [abc def] 2:character <- index 1:address:array:character/deref, 5:literal ] # integer code for 'e' +mem: storing 101 in location 2 :(after "case NEW" following "Primitive Recipe Implementations") if (current_instruction().ingredients[0].properties[0].second[0] == "literal-string") { // allocate an array just large enough for it vector result; result.push_back(Current_routine->alloc); write_memory(current_instruction().products[0], result); // assume that all characters fit in a single location //? cout << "new string literal: " << current_instruction().ingredients[0].name << '\n'; //? 1 Memory[Current_routine->alloc++] = current_instruction().ingredients[0].name.size(); for (size_t i = 0; i < current_instruction().ingredients[0].name.size(); ++i) { Memory[Current_routine->alloc++] = current_instruction().ingredients[0].name[i]; } // mu strings are not null-terminated in memory break; } //:: Make sure that each routine gets a different alloc to start. :(scenario new_concurrent) recipe f1 [ run f2:recipe 1:address:integer <- new integer:type ] recipe f2 [ 2:address:integer <- new integer:type # hack: assumes scheduler implementation 3:boolean <- equal 1:address:integer, 2:address:integer ] +mem: storing 0 in location 3