//: Writing to a literal (not computed) address of 0 in a recipe chains two //: spaces together. When a variable has a property of /space:1, it looks up //: the variable in the chained/surrounding space. /space:2 looks up the //: surrounding space of the surrounding space, etc. :(scenario "closure") recipe main [ default-space:address:space <- new location:type, 30:literal 1:address:space/names:init-counter <- init-counter #? $print [AAAAAAAAAAAAAAAA] #? $print 1:address:space 2:integer/raw <- increment-counter 1:address:space/names:init-counter 3:integer/raw <- increment-counter 1:address:space/names:init-counter ] recipe init-counter [ default-space:address:space <- new location:type, 30:literal x:integer <- copy 23:literal y:integer <- copy 3:literal # variable that will be incremented reply default-space:address:space ] recipe increment-counter [ default-space:address:space <- new space:literal, 30:literal 0:address:space/names:init-counter <- next-ingredient # outer space must be created by 'init-counter' above y:integer/space:1 <- add y:integer/space:1, 1:literal # increment y:integer <- copy 234:literal # dummy reply y:integer/space:1 ] +name: recipe increment-counter is surrounded by init-counter +mem: storing 5 in location 3 //: To make this work, compute the recipe that provides names for the //: surrounding space of each recipe. This must happen before transform_names. :(before "End Globals") unordered_map Surrounding_space; :(after "int main") Transform.push_back(collect_surrounding_spaces); :(code) void collect_surrounding_spaces(const recipe_number r) { for (size_t i = 0; i < Recipe[r].steps.size(); ++i) { const instruction& inst = Recipe[r].steps[i]; if (inst.is_label) continue; for (size_t j = 0; j < inst.products.size(); ++j) { if (isa_literal(inst.products[j])) continue; if (inst.products[j].name != "0") continue; if (inst.products[j].types.size() != 2 || inst.products[j].types[0] != Type_number["address"] || inst.products[j].types[1] != Type_number["space"]) { raise << "slot 0 should always have type address:space, but is " << inst.products[j].to_string() << '\n'; continue; } vector s = property(inst.products[j], "names"); if (s.empty()) raise << "slot 0 requires a /names property in recipe " << Recipe[r].name << die(); if (s.size() > 1) raise << "slot 0 should have a single value in /names, got " << inst.products[j].to_string() << '\n'; string surrounding_recipe_name = s[0]; if (Surrounding_space.find(r) != Surrounding_space.end() && Surrounding_space[r] != Recipe_number[surrounding_recipe_name]) { raise << "recipe " << Recipe[r].name << " can have only one 'surrounding' recipe but has " << Recipe[Surrounding_space[r]].name << " and " << surrounding_recipe_name << '\n'; continue; } trace("name") << "recipe " << Recipe[r].name << " is surrounded by " << surrounding_recipe_name; Surrounding_space[r] = Recipe_number[surrounding_recipe_name]; } } } vector property(const reagent& r, const string& name) { for (size_t p = 0; p != r.properties.size(); ++p) { if (r.properties[p].first == name) return r.properties[p].second; } return vector(); } //: Once surrounding spaces are available, transform_names uses them to handle //: /space properties. :(replace{} "size_t lookup_name(const reagent& r, const recipe_number default_recipe)") size_t lookup_name(const reagent& x, const recipe_number default_recipe) { //? cout << "AAA " << default_recipe << " " << Recipe[default_recipe].name << '\n'; //? 2 //? cout << "AAA " << x.to_string() << '\n'; //? 1 if (!has_property(x, "space")) { if (Name[default_recipe].empty()) raise << "name not found: " << x.name << '\n' << die(); return Name[default_recipe][x.name]; } vector p = property(x, "space"); if (p.size() != 1) raise << "/space property should have exactly one (non-negative integer) value\n"; int n = to_int(p[0]); assert(n >= 0); recipe_number surrounding_recipe = lookup_surrounding_recipe(default_recipe, n); set done; vector path; return lookup_name(x, surrounding_recipe, done, path); } // If the recipe we need to lookup this name in doesn't have names done yet, // recursively call transform_names on it. size_t lookup_name(const reagent& x, const recipe_number r, set& done, vector& path) { if (!Name[r].empty()) return Name[r][x.name]; if (done.find(r) != done.end()) { raise << "can't compute address of " << x.to_string() << " because "; for (size_t i = 1; i < path.size(); ++i) { raise << path[i-1] << " requires computing names of " << path[i] << '\n'; } raise << path[path.size()-1] << " requires computing names of " << r << "..ad infinitum\n" << die(); return 0; } done.insert(r); path.push_back(r); transform_names(r); // Not passing 'done' through. Might this somehow cause an infinite loop? assert(!Name[r].empty()); return Name[r][x.name]; } recipe_number lookup_surrounding_recipe(const recipe_number r, size_t n) { if (n == 0) return r; if (Surrounding_space.find(r) == Surrounding_space.end()) { raise << "don't know surrounding recipe of " << Recipe[r].name << '\n'; return 0; } assert(Surrounding_space[r]); return lookup_surrounding_recipe(Surrounding_space[r], n-1); } //: weaken use-before-set warnings just a tad :(replace{} "bool already_transformed(const reagent& r, const unordered_map& names)") bool already_transformed(const reagent& r, const unordered_map& names) { if (has_property(r, "space")) { vector p = property(r, "space"); assert(p.size() == 1); if (p[0] != "0") return true; } return names.find(r.name) != names.end(); } :(before "End Includes") #include using std::set;