https://github.com/akkartik/mu/blob/master/010vm.cc
1
2
3
4
5
6
7
8 :(before "End Types")
9 enum {
10 EAX,
11 ECX,
12 EDX,
13 EBX,
14 ESP,
15 EBP,
16 ESI,
17 EDI,
18 NUM_INT_REGISTERS,
19 };
20 union reg {
21 int32_t i;
22 uint32_t u;
23 };
24 :(before "End Globals")
25 reg Reg[NUM_INT_REGISTERS] = { {0} };
26 uint32_t EIP = 1;
27 :(before "End Reset")
28 bzero(Reg, sizeof(Reg));
29 EIP = 1;
30
31 :(before "End Types")
32 const int NUM_XMM_REGISTERS = 8;
33 float Xmm[NUM_XMM_REGISTERS] = { 0.0 };
34 const string Xname[NUM_XMM_REGISTERS] = { "XMM0", "XMM1", "XMM2", "XMM3", "XMM4", "XMM5", "XMM6", "XMM7" };
35 :(before "End Reset")
36 bzero(Xmm, sizeof(Xmm));
37
38 :(before "End Help Contents")
39 cerr << " registers\n";
40 :(before "End Help Texts")
41 put_new(Help, "registers",
42 "SubX supports 16 registers: eight 32-bit integer registers and eight single-precision\n"
43 "floating-point registers. From 0 to 7, they are:\n"
44 " integer: EAX ECX EDX EBX ESP EBP ESI EDI\n"
45 " floating point: XMM0 XMM1 XMM2 XMM3 XMM4 XMM5 XMM6 XMM7\n"
46 "ESP contains the top of the stack.\n"
47 "\n"
48 "-- 8-bit registers\n"
49 "Some instructions operate on eight *overlapping* 8-bit registers.\n"
50 "From 0 to 7, they are:\n"
51 " AL CL DL BL AH CH DH BH\n"
52 "The 8-bit registers overlap with the 32-bit ones. AL is the lowest signicant byte\n"
53 "of EAX, AH is the second lowest significant byte, and so on.\n"
54 "\n"
55 "For example, if EBX contains 0x11223344, then BL contains 0x44, and BH contains 0x33.\n"
56 "\n"
57 "There is no way to access bytes within ESP, EBP, ESI or EDI.\n"
58 "\n"
59 "For complete details consult the IA-32 software developer's manual, volume 2,\n"
60 "table 2-2, \"32-bit addressing forms with the ModR/M byte\".\n"
61 "It is included in this repository as 'modrm.pdf'.\n"
62 "The register encodings are described in the top row of the table, but you'll need\n"
63 "to spend some time with it.\n"
64 "\n"
65 "-- flag registers\n"
66 "Various instructions (particularly 'compare') modify one or more of four 1-bit\n"
67 "'flag' registers, as a side-effect:\n"
68 "- the sign flag (SF): usually set if an arithmetic result is negative, or\n"
69 " reset if not.\n"
70 "- the zero flag (ZF): usually set if a result is zero, or reset if not.\n"
71 "- the carry flag (CF): usually set if an arithmetic result overflows by just one bit.\n"
72 " Useful for operating on unsigned numbers.\n"
73 "- the overflow flag (OF): usually set if an arithmetic result overflows by more\n"
74 " than one bit. Useful for operating on signed numbers.\n"
75 "The flag bits are read by conditional jumps.\n"
76 "\n"
77 "For complete details on how different instructions update the flags, consult the IA-32\n"
78 "manual (volume 2). There's various versions of it online, such as https://c9x.me/x86,\n"
79 "though of course you'll need to be careful to ignore instructions and flag registers\n"
80 "that SubX doesn't support.\n"
81 "\n"
82 "It isn't simple, but if this is the processor you have running on your computer.\n"
83 "Might as well get good at it.\n"
84 );
85
86 :(before "End Globals")
87
88 bool SF = false;
89 bool ZF = false;
90 bool CF = false;
91 bool OF = false;
92 :(before "End Reset")
93 SF = ZF = CF = OF = false;
94
95
96
97 :(before "End Types")
98 const uint32_t SEGMENT_ALIGNMENT = 0x1000000;
99 inline uint32_t align_upwards(uint32_t x, uint32_t align) {
100 return (x+align-1) & -(align);
101 }
102
103
104
105 struct vma {
106 uint32_t start;
107 uint32_t end;
108 vector<uint8_t> _data;
109 vma(uint32_t s, uint32_t e) :start(s), end(e) {}
110 vma(uint32_t s) :start(s), end(align_upwards(s+1, SEGMENT_ALIGNMENT)) {}
111 bool match(uint32_t a) {
112 return a >= start && a < end;
113 }
114 bool match32(uint32_t a) {
115 return a >= start && a+4 <= end;
116 }
117 uint8_t& data(uint32_t a) {
118 assert(match(a));
119 uint32_t result_index = a-start;
120 if (_data.size() <= result_index+sizeof(int)) {
121 const int align = 0x1000;
122 uint32_t result_size = result_index + 1;
123 uint32_t new_size = align_upwards(result_size, align);
124
125 if (new_size < _data.size() * 2)
126 new_size = _data.size() * 2;
127
128 if (new_size > end-start)
129 new_size = end-start;
130 _data.resize(new_size);
131 }
132 return _data.at(result_index);
133 }
134 void grow_until(uint32_t new_end_address) {
135 if (new_end_address < end) return;
136
137 void sanity_check(uint32_t start, uint32_t end);
138 sanity_check(start, new_end_address);
139 end = new_end_address;
140 }
141
142 };
143 :(code)
144 void sanity_check(uint32_t start, uint32_t end) {
145 bool dup_found = false;
146 for (int i = 0; i < SIZE(Mem); ++i) {
147 const vma& curr = Mem.at(i);
148 if (curr.start == start) {
149 assert(!dup_found);
150 dup_found = true;
151 }
152 else if (curr.start > start) {
153 assert(curr.start > end);
154 }
155 else if (curr.start < start) {
156 assert(curr.end < start);
157 }
158 }
159 }
160
161 :(before "End Globals")
162
163 vector<vma> Mem;
164 :(code)
165 :(before "End Globals")
166 uint32_t End_of_program = 0;
167
168 :(before "End Reset")
169 Mem.clear();
170 End_of_program = 0;
171 :(code)
172
173
174 inline uint8_t read_mem_u8(uint32_t addr) {
175 uint8_t* handle = mem_addr_u8(addr);
176 return handle ? *handle : 0;
177 }
178 inline int8_t read_mem_i8(uint32_t addr) {
179 return static_cast<int8_t>(read_mem_u8(addr));
180 }
181 inline uint32_t read_mem_u32(uint32_t addr) {
182 uint32_t* handle = mem_addr_u32(addr);
183 return handle ? *handle : 0;
184 }
185 inline int32_t read_mem_i32(uint32_t addr) {
186 return static_cast<int32_t>(read_mem_u32(addr));
187 }
188 inline float read_mem_f32(uint32_t addr) {
189 return static_cast<float>(read_mem_u32(addr));
190 }
191
192 inline uint8_t* mem_addr_u8(uint32_t addr) {
193 uint8_t* result = NULL;
194 for (int i = 0; i < SIZE(Mem); ++i) {
195 if (Mem.at(i).match(addr)) {
196 if (result)
197 raise << "address 0x" << HEXWORD << addr << " is in two segments\n" << end();
198 result = &Mem.at(i).data(addr);
199 }
200 }
201 if (result == NULL) {
202 if (Trace_file.is_open()) Trace_file.flush();
203 raise << "Tried to access uninitialized memory at address 0x" << HEXWORD << addr << '\n' << end();
204 exit(1);
205 }
206 return result;
207 }
208 inline int8_t* mem_addr_i8(uint32_t addr) {
209 return reinterpret_cast<int8_t*>(mem_addr_u8(addr));
210 }
211 inline uint32_t* mem_addr_u32(uint32_t addr) {
212 uint32_t* result = NULL;
213 for (int i = 0; i < SIZE(Mem); ++i) {
214 if (Mem.at(i).match32(addr)) {
215 if (result)
216 raise << "address 0x" << HEXWORD << addr << " is in two segments\n" << end();
217 result = reinterpret_cast<uint32_t*>(&Mem.at(i).data(addr));
218 }
219 }
220 if (result == NULL) {
221 if (Trace_file.is_open()) Trace_file.flush();
222 raise << "Tried to access uninitialized memory at address 0x" << HEXWORD << addr << '\n' << end();
223 exit(1);
224 }
225 return result;
226 }
227 inline int32_t* mem_addr_i32(uint32_t addr) {
228 return reinterpret_cast<int32_t*>(mem_addr_u32(addr));
229 }
230 inline float* mem_addr_f32(uint32_t addr) {
231 return reinterpret_cast<float*>(mem_addr_u32(addr));
232 }
233
234 inline const char* mem_addr_kernel_string(uint32_t addr) {
235 return reinterpret_cast<const char*>(mem_addr_u8(addr));
236 }
237 inline string mem_addr_string(uint32_t addr, uint32_t size) {
238 ostringstream out;
239 for (size_t i = 0; i < size; ++i)
240 out << read_mem_u8(addr+i);
241 return out.str();
242 }
243
244 inline void write_mem_u8(uint32_t addr, uint8_t val) {
245 uint8_t* handle = mem_addr_u8(addr);
246 if (handle != NULL) *handle = val;
247 }
248 inline void write_mem_i8(uint32_t addr, int8_t val) {
249 int8_t* handle = mem_addr_i8(addr);
250 if (handle != NULL) *handle = val;
251 }
252 inline void write_mem_u32(uint32_t addr, uint32_t val) {
253 uint32_t* handle = mem_addr_u32(addr);
254 if (handle != NULL) *handle = val;
255 }
256 inline void write_mem_i32(uint32_t addr, int32_t val) {
257 int32_t* handle = mem_addr_i32(addr);
258 if (handle != NULL) *handle = val;
259 }
260
261 inline bool already_allocated(uint32_t addr) {
262 bool result = false;
263 for (int i = 0; i < SIZE(Mem); ++i) {
264 if (Mem.at(i).match(addr)) {
265 if (result)
266 raise << "address 0x" << HEXWORD << addr << " is in two segments\n" << end();
267 result = true;
268 }
269 }
270 return result;
271 }
272
273
274
275 :(code)
276
277 void run_one_instruction() {
278 uint8_t op=0, op2=0, op3=0;
279
280 if (Trace_file.is_open()) {
281 dump_registers();
282
283 }
284 uint32_t inst_start_address = EIP;
285 op = next();
286 trace(Callstack_depth+1, "run") << "0x" << HEXWORD << inst_start_address << " opcode: " << HEXBYTE << NUM(op) << end();
287 switch (op) {
288 case 0xf4:
289 EIP = End_of_program;
290 break;
291
292 case 0x0f:
293 switch(op2 = next()) {
294
295 default:
296 cerr << "unrecognized second opcode after 0f: " << HEXBYTE << NUM(op2) << '\n';
297 exit(1);
298 }
299 break;
300 case 0xf2:
301 switch(op2 = next()) {
302
303 case 0x0f:
304 switch(op3 = next()) {
305
306 default:
307 cerr << "unrecognized third opcode after f2 0f: " << HEXBYTE << NUM(op3) << '\n';
308 exit(1);
309 }
310 break;
311 default:
312 cerr << "unrecognized second opcode after f2: " << HEXBYTE << NUM(op2) << '\n';
313 exit(1);
314 }
315 break;
316 case 0xf3:
317 switch(op2 = next()) {
318
319 case 0x0f:
320 switch(op3 = next()) {
321
322 default:
323 cerr << "unrecognized third opcode after f3 0f: " << HEXBYTE << NUM(op3) << '\n';
324 exit(1);
325 }
326 break;
327 default:
328 cerr << "unrecognized second opcode after f3: " << HEXBYTE << NUM(op2) << '\n';
329 exit(1);
330 }
331 break;
332 default:
333 cerr << "unrecognized opcode: " << HEXBYTE << NUM(op) << '\n';
334 exit(1);
335 }
336 }
337
338 inline uint8_t next() {
339 return read_mem_u8(EIP++);
340 }
341
342 void dump_registers() {
343 ostringstream out;
344 out << "regs: ";
345 for (int i = 0; i < NUM_INT_REGISTERS; ++i) {
346 if (i > 0) out << " ";
347 out << i << ": " << std::hex << std::setw(8) << std::setfill('_') << Reg[i].u;
348 }
349 out << " -- SF: " << SF << "; ZF: " << ZF << "; CF: " << CF << "; OF: " << OF;
350 trace(Callstack_depth+1, "run") << out.str() << end();
351 }
352
353
354 :(before "End Globals")
355 map<string, string> Name;
356 map<string, string> Name_0f;
357 map<string, string> Name_f3;
358 map<string, string> Name_f3_0f;
359 :(before "End One-time Setup")
360 init_op_names();
361 :(code)
362 void init_op_names() {
363 put(Name, "f4", "halt (hlt)");
364
365 }
366
367 :(before "End Help Special-cases(key)")
368 if (key == "opcodes") {
369 cerr << "Opcodes currently supported by SubX:\n";
370 for (map<string, string>::iterator p = Name.begin(); p != Name.end(); ++p)
371 cerr << " " << p->first << ": " << p->second << '\n';
372 for (map<string, string>::iterator p = Name_0f.begin(); p != Name_0f.end(); ++p)
373 cerr << " 0f " << p->first << ": " << p->second << '\n';
374 for (map<string, string>::iterator p = Name_f3.begin(); p != Name_f3.end(); ++p)
375 cerr << " f3 " << p->first << ": " << p->second << '\n';
376 for (map<string, string>::iterator p = Name_f3_0f.begin(); p != Name_f3_0f.end(); ++p)
377 cerr << " f3 0f " << p->first << ": " << p->second << '\n';
378 cerr << "Run `bootstrap help instructions` for details on words like 'r32' and 'disp8'.\n"
379 "For complete details on these instructions, consult the IA-32 manual (volume 2).\n"
380 "There's various versions of it online, such as https://c9x.me/x86.\n"
381 "The mnemonics in brackets will help you locate each instruction.\n";
382 return 0;
383 }
384 :(before "End Help Contents")
385 cerr << " opcodes\n";
386
387
388
389
390
391
392
393
394
395
396
397
398
399 :(before "End Globals")
400 extern const int Initial_callstack_depth = 2;
401 int Callstack_depth = Initial_callstack_depth;
402 :(before "End Reset")
403 Callstack_depth = Initial_callstack_depth;
404
405 :(before "End Includes")
406 #include <iomanip>
407 #define HEXBYTE std::hex << std::setw(2) << std::setfill('0')
408 #define HEXWORD std::hex << std::setw(8) << std::setfill('0')
409
410 #define NUM(X) static_cast<int>(X)
411 #include <stdint.h>