https://github.com/akkartik/mu/blob/master/012elf.cc
1
2
3
4
5 :(before "End Main")
6 assert(argc > 1);
7 if (is_equal(argv[1], "run")) {
8
9 if (Trace_file.is_open()) Trace_stream = new trace_stream;
10 trace(2, "run") << "=== Starting to run" << end();
11 if (argc <= 2) {
12 raise << "Not enough arguments provided.\n" << die();
13 }
14 reset();
15 cerr << std::hex;
16 load_elf(argv[2], argc, argv);
17 while (EIP < End_of_program)
18 run_one_instruction();
19 raise << "executed past end of the world: " << EIP << " vs " << End_of_program << '\n' << end();
20 return 1;
21 }
22
23 :(code)
24 void load_elf(const string& filename, int argc, char* argv[]) {
25 int fd = open(filename.c_str(), O_RDONLY);
26 if (fd < 0) raise << filename.c_str() << ": open" << perr() << '\n' << die();
27 off_t size = lseek(fd, 0, SEEK_END);
28 lseek(fd, 0, SEEK_SET);
29 uint8_t* elf_contents = static_cast<uint8_t*>(malloc(size));
30 if (elf_contents == NULL) raise << "malloc(" << size << ')' << perr() << '\n' << die();
31 ssize_t read_size = read(fd, elf_contents, size);
32 if (size != read_size) raise << "read → " << size << " (!= " << read_size << ')' << perr() << '\n' << die();
33 load_elf_contents(elf_contents, size, argc, argv);
34 free(elf_contents);
35 }
36
37 void load_elf_contents(uint8_t* elf_contents, size_t size, int argc, char* argv[]) {
38 uint8_t magic[5] = {0};
39 memcpy(magic, elf_contents, 4);
40 if (memcmp(magic, "\177ELF", 4) != 0)
41 raise << "Invalid ELF file; starts with \"" << magic << '"' << die();
42 if (elf_contents[4] != 1)
43 raise << "Only 32-bit ELF files (4-byte words; virtual addresses up to 4GB) supported.\n" << die();
44 if (elf_contents[5] != 1)
45 raise << "Only little-endian ELF files supported.\n" << die();
46
47 uint32_t e_machine_type = u32_in(&elf_contents[16]);
48 if (e_machine_type != 0x00030002)
49 raise << "ELF type/machine 0x" << HEXWORD << e_machine_type << " isn't i386 executable\n" << die();
50
51 uint32_t e_entry = u32_in(&elf_contents[24]);
52 uint32_t e_phoff = u32_in(&elf_contents[28]);
53
54
55 uint32_t e_ehsize = u16_in(&elf_contents[40]);
56 if (e_ehsize < 52) raise << "Invalid binary; ELF header too small\n" << die();
57 uint32_t e_phentsize = u16_in(&elf_contents[42]);
58 uint32_t e_phnum = u16_in(&elf_contents[44]);
59 trace(90, "load") << e_phnum << " entries in the program header, each " << e_phentsize << " bytes long" << end();
60
61
62
63
64 set<uint32_t> overlap;
65 for (size_t i = 0; i < e_phnum; ++i)
66 load_segment_from_program_header(elf_contents, i, size, e_phoff + i*e_phentsize, e_ehsize, overlap);
67
68
69 assert(overlap.find(STACK_SEGMENT) == overlap.end());
70 Mem.push_back(vma(STACK_SEGMENT));
71 assert(overlap.find(AFTER_STACK) == overlap.end());
72
73 Reg[ESP].u = AFTER_STACK;
74 Reg[EBP].u = 0;
75 EIP = e_entry;
76
77
78
79
80 Mem.push_back(vma(ARGV_DATA_SEGMENT));
81 uint32_t argv_data = ARGV_DATA_SEGMENT;
82 for (int i = argc-1; i >= 2; --i) {
83 push(argv_data);
84 for (size_t j = 0; j <= strlen(argv[i]); ++j) {
85 assert(overlap.find(argv_data) == overlap.end());
86 write_mem_u8(argv_data, argv[i][j]);
87 argv_data += sizeof(char);
88 assert(argv_data < ARGV_DATA_SEGMENT + SEGMENT_ALIGNMENT);
89 }
90 }
91 push(argc-2);
92 }
93
94 void push(uint32_t val) {
95 Reg[ESP].u -= 4;
96 if (Reg[ESP].u < STACK_SEGMENT) {
97 raise << "The stack overflowed its segment. "
98 << "Maybe SPACE_FOR_SEGMENT should be larger? "
99 << "Or you need to carve out an exception for the stack segment "
100 << "to be larger.\n" << die();
101 }
102 trace(Callstack_depth+1, "run") << "decrementing ESP to 0x" << HEXWORD << Reg[ESP].u << end();
103 trace(Callstack_depth+1, "run") << "pushing value 0x" << HEXWORD << val << end();
104 write_mem_u32(Reg[ESP].u, val);
105 }
106
107 void load_segment_from_program_header(uint8_t* elf_contents, int segment_index, size_t size, uint32_t offset, uint32_t e_ehsize, set<uint32_t>& overlap) {
108 uint32_t p_type = u32_in(&elf_contents[offset]);
109 trace(90, "load") << "program header at offset " << offset << ": type " << p_type << end();
110 if (p_type != 1) {
111 trace(90, "load") << "ignoring segment at offset " << offset << " of non PT_LOAD type " << p_type << " (see http://refspecs.linuxbase.org/elf/elf.pdf)" << end();
112 return;
113 }
114 uint32_t p_offset = u32_in(&elf_contents[offset + 4]);
115 uint32_t p_vaddr = u32_in(&elf_contents[offset + 8]);
116 if (e_ehsize > p_vaddr) raise << "Invalid binary; program header overlaps ELF header\n" << die();
117
118 uint32_t p_filesz = u32_in(&elf_contents[offset + 16]);
119 uint32_t p_memsz = u32_in(&elf_contents[offset + 20]);
120 if (p_filesz != p_memsz)
121 raise << "Can't yet handle segments where p_filesz != p_memsz (see http://refspecs.linuxbase.org/elf/elf.pdf)\n" << die();
122
123 if (p_offset + p_filesz > size)
124 raise << "Invalid binary; segment at offset " << offset << " is too large: wants to end at " << p_offset+p_filesz << " but the file ends at " << size << '\n' << die();
125 if (p_memsz >= SEGMENT_ALIGNMENT) {
126 raise << "Code segment too small for SubX; for now please manually increase SEGMENT_ALIGNMENT.\n" << end();
127 return;
128 }
129 trace(90, "load") << "blitting file offsets (" << p_offset << ", " << (p_offset+p_filesz) << ") to addresses (" << p_vaddr << ", " << (p_vaddr+p_memsz) << ')' << end();
130 if (size > p_memsz) size = p_memsz;
131 Mem.push_back(vma(p_vaddr));
132 for (size_t i = 0; i < p_filesz; ++i) {
133 assert(overlap.find(p_vaddr+i) == overlap.end());
134 write_mem_u8(p_vaddr+i, elf_contents[p_offset+i]);
135 overlap.insert(p_vaddr+i);
136 }
137 if (segment_index == 0 && End_of_program < p_vaddr+p_memsz)
138 End_of_program = p_vaddr+p_memsz;
139 }
140
141 :(before "End Includes")
142
143
144
145
146
147
148
149
150 const uint32_t START_HEAP = 0x0b000000;
151 const uint32_t END_HEAP = 0xbd000000;
152 const uint32_t STACK_SEGMENT = 0xbd000000;
153 const uint32_t AFTER_STACK = 0xbe000000;
154 const uint32_t ARGV_DATA_SEGMENT = 0xbf000000;
155
156
157 :(before "End Dump Info for Instruction")
158
159 :(code)
160 void dump_stack() {
161 ostringstream out;
162 trace(Callstack_depth+1, "run") << "stack:" << end();
163 for (uint32_t a = AFTER_STACK-4; a > Reg[ESP].u; a -= 4)
164 trace(Callstack_depth+2, "run") << " 0x" << HEXWORD << a << " => 0x" << HEXWORD << read_mem_u32(a) << end();
165 trace(Callstack_depth+2, "run") << " 0x" << HEXWORD << Reg[ESP].u << " => 0x" << HEXWORD << read_mem_u32(Reg[ESP].u) << " <=== ESP" << end();
166 for (uint32_t a = Reg[ESP].u-4; a > Reg[ESP].u-40; a -= 4)
167 trace(Callstack_depth+2, "run") << " 0x" << HEXWORD << a << " => 0x" << HEXWORD << read_mem_u32(a) << end();
168 }
169
170 inline uint32_t u32_in(uint8_t* p) {
171 return p[0] | p[1] << 8 | p[2] << 16 | p[3] << 24;
172 }
173
174 inline uint16_t u16_in(uint8_t* p) {
175 return p[0] | p[1] << 8;
176 }
177
178 :(before "End Types")
179 struct perr {};
180 :(code)
181 ostream& operator<<(ostream& os, perr ) {
182 if (errno)
183 os << ": " << strerror(errno);
184 return os;
185 }
186
187 :(before "End Includes")
188 #include <sys/types.h>
189 #include <sys/stat.h>
190 #include <fcntl.h>
191 #include <stdarg.h>
192 #include <errno.h>
193 #include <unistd.h>