https://github.com/akkartik/mu/blob/master/013direct_addressing.cc
1
2
3 :(before "End Initialize Op Names")
4 put_new(Name, "01", "add r32 to rm32 (add)");
5
6 :(code)
7 void test_add_r32_to_r32() {
8 Reg[EAX].i = 0x10;
9 Reg[EBX].i = 1;
10 run(
11 "== code 0x1\n"
12
13 " 01 d8 \n"
14
15 );
16 CHECK_TRACE_CONTENTS(
17 "run: add EBX to r/m32\n"
18 "run: r/m32 is EAX\n"
19 "run: storing 0x00000011\n"
20 );
21 }
22
23 :(before "End Single-Byte Opcodes")
24 case 0x01: {
25 uint8_t modrm = next();
26 uint8_t arg2 = (modrm>>3)&0x7;
27 trace(Callstack_depth+1, "run") << "add " << rname(arg2) << " to r/m32" << end();
28 int32_t* signed_arg1 = effective_address(modrm);
29 int32_t signed_result = *signed_arg1 + Reg[arg2].i;
30 SF = (signed_result < 0);
31 ZF = (signed_result == 0);
32 int64_t signed_full_result = static_cast<int64_t>(*signed_arg1) + Reg[arg2].i;
33 OF = (signed_result != signed_full_result);
34
35 uint32_t unsigned_arg1 = static_cast<uint32_t>(*signed_arg1);
36 uint32_t unsigned_result = unsigned_arg1 + Reg[arg2].u;
37 uint64_t unsigned_full_result = static_cast<uint64_t>(unsigned_arg1) + Reg[arg2].u;
38 CF = (unsigned_result != unsigned_full_result);
39 trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
40 *signed_arg1 = signed_result;
41 trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *signed_arg1 << end();
42 break;
43 }
44
45 :(code)
46 void test_add_r32_to_r32_signed_overflow() {
47 Reg[EAX].i = 0x7fffffff;
48 Reg[EBX].i = 1;
49 run(
50 "== code 0x1\n"
51
52 " 01 d8 \n"
53
54 );
55 CHECK_TRACE_CONTENTS(
56 "run: add EBX to r/m32\n"
57 "run: r/m32 is EAX\n"
58 "run: SF=1; ZF=0; CF=0; OF=1\n"
59 "run: storing 0x80000000\n"
60 );
61 }
62
63 void test_add_r32_to_r32_unsigned_overflow() {
64 Reg[EAX].u = 0xffffffff;
65 Reg[EBX].u = 1;
66 run(
67 "== code 0x1\n"
68
69 " 01 d8 \n"
70
71 );
72 CHECK_TRACE_CONTENTS(
73 "run: add EBX to r/m32\n"
74 "run: r/m32 is EAX\n"
75 "run: SF=0; ZF=1; CF=1; OF=0\n"
76 "run: storing 0x00000000\n"
77 );
78 }
79
80 void test_add_r32_to_r32_unsigned_and_signed_overflow() {
81 Reg[EAX].u = Reg[EBX].u = 0x80000000;
82 run(
83 "== code 0x1\n"
84
85 " 01 d8 \n"
86
87 );
88 CHECK_TRACE_CONTENTS(
89 "run: add EBX to r/m32\n"
90 "run: r/m32 is EAX\n"
91 "run: SF=0; ZF=1; CF=1; OF=1\n"
92 "run: storing 0x00000000\n"
93 );
94 }
95
96 :(code)
97
98
99
100
101 int32_t* effective_address(uint8_t modrm) {
102 const uint8_t mod = (modrm>>6);
103
104 const uint8_t rm = modrm & 0x7;
105 if (mod == 3) {
106
107 trace(Callstack_depth+1, "run") << "r/m32 is " << rname(rm) << end();
108 return &Reg[rm].i;
109 }
110 uint32_t addr = effective_address_number(modrm);
111 trace(Callstack_depth+1, "run") << "effective address contains 0x" << HEXWORD << read_mem_i32(addr) << end();
112 return mem_addr_i32(addr);
113 }
114
115
116 uint32_t effective_address_number(uint8_t modrm) {
117 const uint8_t mod = (modrm>>6);
118
119 const uint8_t rm = modrm & 0x7;
120 uint32_t addr = 0;
121 switch (mod) {
122 case 3:
123
124 raise << "unexpected direct addressing mode\n" << end();
125 return 0;
126
127 default:
128 cerr << "unrecognized mod bits: " << NUM(mod) << '\n';
129 exit(1);
130 }
131
132
133 return addr;
134 }
135
136 string rname(uint8_t r) {
137 switch (r) {
138 case 0: return "EAX";
139 case 1: return "ECX";
140 case 2: return "EDX";
141 case 3: return "EBX";
142 case 4: return "ESP";
143 case 5: return "EBP";
144 case 6: return "ESI";
145 case 7: return "EDI";
146 default: raise << "invalid register " << r << '\n' << end(); return "";
147 }
148 }
149
150
151
152 :(before "End Initialize Op Names")
153 put_new(Name, "29", "subtract r32 from rm32 (sub)");
154
155 :(code)
156 void test_subtract_r32_from_r32() {
157 Reg[EAX].i = 10;
158 Reg[EBX].i = 1;
159 run(
160 "== code 0x1\n"
161
162 " 29 d8 \n"
163
164 );
165 CHECK_TRACE_CONTENTS(
166 "run: subtract EBX from r/m32\n"
167 "run: r/m32 is EAX\n"
168 "run: storing 0x00000009\n"
169 );
170 }
171
172 :(before "End Single-Byte Opcodes")
173 case 0x29: {
174 const uint8_t modrm = next();
175 const uint8_t arg2 = (modrm>>3)&0x7;
176 trace(Callstack_depth+1, "run") << "subtract " << rname(arg2) << " from r/m32" << end();
177 int32_t* signed_arg1 = effective_address(modrm);
178 int32_t signed_result = *signed_arg1 - Reg[arg2].i;
179 SF = (signed_result < 0);
180 ZF = (signed_result == 0);
181 int64_t signed_full_result = static_cast<int64_t>(*signed_arg1) - Reg[arg2].i;
182 OF = (signed_result != signed_full_result);
183
184 uint32_t unsigned_arg1 = static_cast<uint32_t>(*signed_arg1);
185 uint32_t unsigned_result = unsigned_arg1 - Reg[arg2].u;
186 uint64_t unsigned_full_result = static_cast<uint64_t>(unsigned_arg1) - Reg[arg2].u;
187 CF = (unsigned_result != unsigned_full_result);
188 trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
189 *signed_arg1 = signed_result;
190 trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *signed_arg1 << end();
191 break;
192 }
193
194 :(code)
195 void test_subtract_r32_from_r32_signed_overflow() {
196 Reg[EAX].i = 0x80000000;
197 Reg[EBX].i = 0x7fffffff;
198 run(
199 "== code 0x1\n"
200
201 " 29 d8 \n"
202
203 );
204 CHECK_TRACE_CONTENTS(
205 "run: subtract EBX from r/m32\n"
206 "run: r/m32 is EAX\n"
207 "run: SF=0; ZF=0; CF=0; OF=1\n"
208 "run: storing 0x00000001\n"
209 );
210 }
211
212 void test_subtract_r32_from_r32_unsigned_overflow() {
213 Reg[EAX].i = 0;
214 Reg[EBX].i = 1;
215 run(
216 "== code 0x1\n"
217
218 " 29 d8 \n"
219
220 );
221 CHECK_TRACE_CONTENTS(
222 "run: subtract EBX from r/m32\n"
223 "run: r/m32 is EAX\n"
224 "run: SF=1; ZF=0; CF=1; OF=0\n"
225 "run: storing 0xffffffff\n"
226 );
227 }
228
229 void test_subtract_r32_from_r32_signed_and_unsigned_overflow() {
230 Reg[EAX].i = 0;
231 Reg[EBX].i = 0x80000000;
232 run(
233 "== code 0x1\n"
234
235 " 29 d8 \n"
236
237 );
238 CHECK_TRACE_CONTENTS(
239 "run: subtract EBX from r/m32\n"
240 "run: r/m32 is EAX\n"
241 "run: SF=1; ZF=0; CF=1; OF=1\n"
242 "run: storing 0x80000000\n"
243 );
244 }
245
246
247
248 :(before "End Initialize Op Names")
249 put_new(Name, "f7", "negate/multiply/divide rm32 (with EAX and EDX if necessary) depending on subop (neg/mul/idiv)");
250
251 :(code)
252 void test_multiply_EAX_by_r32() {
253 Reg[EAX].i = 4;
254 Reg[ECX].i = 3;
255 run(
256 "== code 0x1\n"
257
258 " f7 e1 \n"
259
260 );
261 CHECK_TRACE_CONTENTS(
262 "run: operate on r/m32\n"
263 "run: r/m32 is ECX\n"
264 "run: subop: multiply EAX by r/m32\n"
265 "run: storing 0x0000000c\n"
266 );
267 }
268
269 :(before "End Single-Byte Opcodes")
270 case 0xf7: {
271 const uint8_t modrm = next();
272 trace(Callstack_depth+1, "run") << "operate on r/m32" << end();
273 int32_t* arg1 = effective_address(modrm);
274 const uint8_t subop = (modrm>>3)&0x7;
275 switch (subop) {
276 case 4: {
277 trace(Callstack_depth+1, "run") << "subop: multiply EAX by r/m32" << end();
278 const uint64_t result = static_cast<uint64_t>(Reg[EAX].u) * static_cast<uint32_t>(*arg1);
279 Reg[EAX].u = result & 0xffffffff;
280 Reg[EDX].u = result >> 32;
281 OF = (Reg[EDX].u != 0);
282 CF = OF;
283 trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
284 trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << Reg[EAX].u << end();
285 break;
286 }
287
288 default:
289 cerr << "unrecognized subop for opcode f7: " << NUM(subop) << '\n';
290 exit(1);
291 }
292 break;
293 }
294
295
296
297 :(before "End Initialize Op Names")
298 put_new(Name_0f, "af", "multiply rm32 into r32 (imul)");
299
300 :(code)
301 void test_multiply_r32_into_r32() {
302 Reg[EAX].i = 4;
303 Reg[EBX].i = 2;
304 run(
305 "== code 0x1\n"
306
307 " 0f af d8 \n"
308
309 );
310 CHECK_TRACE_CONTENTS(
311 "run: multiply EBX by r/m32\n"
312 "run: r/m32 is EAX\n"
313 "run: storing 0x00000008\n"
314 );
315 }
316
317 :(before "End Two-Byte Opcodes Starting With 0f")
318 case 0xaf: {
319 const uint8_t modrm = next();
320 const uint8_t arg1 = (modrm>>3)&0x7;
321 trace(Callstack_depth+1, "run") << "multiply " << rname(arg1) << " by r/m32" << end();
322 const int32_t* arg2 = effective_address(modrm);
323 int32_t result = Reg[arg1].i * (*arg2);
324 SF = (Reg[arg1].i < 0);
325 ZF = (Reg[arg1].i == 0);
326 int64_t full_result = static_cast<int64_t>(Reg[arg1].i) * (*arg2);
327 OF = (Reg[arg1].i != full_result);
328 CF = OF;
329 trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
330 Reg[arg1].i = result;
331 trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << Reg[arg1].i << end();
332 break;
333 }
334
335
336
337 :(code)
338 void test_negate_r32() {
339 Reg[EBX].i = 1;
340 run(
341 "== code 0x1\n"
342
343 " f7 db \n"
344
345 );
346 CHECK_TRACE_CONTENTS(
347 "run: operate on r/m32\n"
348 "run: r/m32 is EBX\n"
349 "run: subop: negate\n"
350 "run: storing 0xffffffff\n"
351 );
352 }
353
354 :(before "End Op f7 Subops")
355 case 3: {
356 trace(Callstack_depth+1, "run") << "subop: negate" << end();
357
358 if (static_cast<uint32_t>(*arg1) == 0x80000000) {
359 trace(Callstack_depth+1, "run") << "overflow" << end();
360 SF = true;
361 ZF = false;
362 OF = true;
363 break;
364 }
365 int32_t result = -(*arg1);
366 SF = (result >> 31);
367 ZF = (result == 0);
368 OF = false;
369 CF = (*arg1 != 0);
370 trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
371 *arg1 = result;
372 trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *arg1 << end();
373 break;
374 }
375
376 :(code)
377
378 void test_negate_can_overflow() {
379 Reg[EBX].i = 0x80000000;
380 run(
381 "== code 0x1\n"
382
383 " f7 db \n"
384
385 );
386 CHECK_TRACE_CONTENTS(
387 "run: operate on r/m32\n"
388 "run: r/m32 is EBX\n"
389 "run: subop: negate\n"
390 "run: overflow\n"
391 );
392 }
393
394
395
396 void test_divide_EAX_by_rm32() {
397 Reg[EAX].u = 7;
398 Reg[EDX].u = 0;
399 Reg[ECX].i = 3;
400 run(
401 "== code 0x1\n"
402
403 " f7 f9 \n"
404
405 );
406 CHECK_TRACE_CONTENTS(
407 "run: operate on r/m32\n"
408 "run: r/m32 is ECX\n"
409 "run: subop: divide EDX:EAX by r/m32, storing quotient in EAX and remainder in EDX\n"
410 "run: quotient: 0x00000002\n"
411 "run: remainder: 0x00000001\n"
412 );
413 }
414
415 :(before "End Op f7 Subops")
416 case 7: {
417 trace(Callstack_depth+1, "run") << "subop: divide EDX:EAX by r/m32, storing quotient in EAX and remainder in EDX" << end();
418 int64_t dividend = static_cast<int64_t>((static_cast<uint64_t>(Reg[EDX].u) << 32) | Reg[EAX].u);
419 int32_t divisor = *arg1;
420 assert(divisor != 0);
421 Reg[EAX].i = dividend/divisor;
422 Reg[EDX].i = dividend%divisor;
423
424 trace(Callstack_depth+1, "run") << "quotient: 0x" << HEXWORD << Reg[EAX].i << end();
425 trace(Callstack_depth+1, "run") << "remainder: 0x" << HEXWORD << Reg[EDX].i << end();
426 break;
427 }
428
429 :(code)
430 void test_divide_EAX_by_negative_rm32() {
431 Reg[EAX].u = 7;
432 Reg[EDX].u = 0;
433 Reg[ECX].i = -3;
434 run(
435 "== code 0x1\n"
436
437 " f7 f9 \n"
438
439 );
440 CHECK_TRACE_CONTENTS(
441 "run: operate on r/m32\n"
442 "run: r/m32 is ECX\n"
443 "run: subop: divide EDX:EAX by r/m32, storing quotient in EAX and remainder in EDX\n"
444 "run: quotient: 0xfffffffe\n"
445 "run: remainder: 0x00000001\n"
446 );
447 }
448
449 void test_divide_negative_EAX_by_rm32() {
450 Reg[EAX].i = -7;
451 Reg[EDX].i = -1;
452 Reg[ECX].i = 3;
453 run(
454 "== code 0x1\n"
455
456 " f7 f9 \n"
457
458 );
459 CHECK_TRACE_CONTENTS(
460 "run: operate on r/m32\n"
461 "run: r/m32 is ECX\n"
462 "run: subop: divide EDX:EAX by r/m32, storing quotient in EAX and remainder in EDX\n"
463 "run: quotient: 0xfffffffe\n"
464 "run: remainder: 0xffffffff\n"
465 );
466 }
467
468 void test_divide_negative_EDX_EAX_by_rm32() {
469 Reg[EAX].i = 0;
470 Reg[EDX].i = -7;
471 Reg[ECX].i = 0x40000000;
472 run(
473 "== code 0x1\n"
474
475 " f7 f9 \n"
476
477 );
478 CHECK_TRACE_CONTENTS(
479 "run: operate on r/m32\n"
480 "run: r/m32 is ECX\n"
481 "run: subop: divide EDX:EAX by r/m32, storing quotient in EAX and remainder in EDX\n"
482 "run: quotient: 0xffffffe4\n"
483 "run: remainder: 0x00000000\n"
484 );
485 }
486
487
488
489 :(before "End Initialize Op Names")
490 put_new(Name, "d3", "shift rm32 by CL bits depending on subop (sal/sar/shl/shr)");
491
492 :(code)
493 void test_shift_left_r32_with_cl() {
494 Reg[EBX].i = 13;
495 Reg[ECX].i = 1;
496 run(
497 "== code 0x1\n"
498
499 " d3 e3 \n"
500
501 );
502 CHECK_TRACE_CONTENTS(
503 "run: operate on r/m32\n"
504 "run: r/m32 is EBX\n"
505 "run: subop: shift left by CL bits\n"
506 "run: storing 0x0000001a\n"
507 );
508 }
509
510 :(before "End Single-Byte Opcodes")
511 case 0xd3: {
512 const uint8_t modrm = next();
513 trace(Callstack_depth+1, "run") << "operate on r/m32" << end();
514 int32_t* arg1 = effective_address(modrm);
515 const uint8_t subop = (modrm>>3)&0x7;
516 switch (subop) {
517 case 4: {
518 trace(Callstack_depth+1, "run") << "subop: shift left by CL bits" << end();
519 uint8_t count = Reg[ECX].u & 0x1f;
520
521 if (count == 1) {
522 bool msb = (*arg1 & 0x80000000) >> 1;
523 bool pnsb = (*arg1 & 0x40000000);
524 OF = (msb != pnsb);
525 }
526 int32_t result = (*arg1 << count);
527 ZF = (result == 0);
528 SF = (result < 0);
529 CF = (*arg1 << (count-1)) & 0x80000000;
530 trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
531 *arg1 = result;
532 trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *arg1 << end();
533 break;
534 }
535
536 default:
537 cerr << "unrecognized subop for opcode d3: " << NUM(subop) << '\n';
538 exit(1);
539 }
540 break;
541 }
542
543
544
545 :(code)
546 void test_shift_right_arithmetic_r32_with_cl() {
547 Reg[EBX].i = 26;
548 Reg[ECX].i = 1;
549 run(
550 "== code 0x1\n"
551
552 " d3 fb \n"
553
554 );
555 CHECK_TRACE_CONTENTS(
556 "run: operate on r/m32\n"
557 "run: r/m32 is EBX\n"
558 "run: subop: shift right by CL bits, while preserving sign\n"
559 "run: storing 0x0000000d\n"
560 );
561 }
562
563 :(before "End Op d3 Subops")
564 case 7: {
565 trace(Callstack_depth+1, "run") << "subop: shift right by CL bits, while preserving sign" << end();
566 uint8_t count = Reg[ECX].u & 0x1f;
567 *arg1 = (*arg1 >> count);
568 ZF = (*arg1 == 0);
569 SF = (*arg1 < 0);
570
571 if (count == 1) OF = false;
572
573 trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *arg1 << end();
574 break;
575 }
576
577 :(code)
578 void test_shift_right_arithmetic_odd_r32_with_cl() {
579 Reg[EBX].i = 27;
580 Reg[ECX].i = 1;
581 run(
582 "== code 0x1\n"
583
584 " d3 fb \n"
585
586 );
587 CHECK_TRACE_CONTENTS(
588 "run: operate on r/m32\n"
589 "run: r/m32 is EBX\n"
590 "run: subop: shift right by CL bits, while preserving sign\n"
591
592 "run: storing 0x0000000d\n"
593 );
594 }
595
596 void test_shift_right_arithmetic_negative_r32_with_cl() {
597 Reg[EBX].i = 0xfffffffd;
598 Reg[ECX].i = 1;
599 run(
600 "== code 0x1\n"
601
602 " d3 fb \n"
603
604 );
605 CHECK_TRACE_CONTENTS(
606 "run: operate on r/m32\n"
607 "run: r/m32 is EBX\n"
608 "run: subop: shift right by CL bits, while preserving sign\n"
609
610 "run: storing 0xfffffffe\n"
611 );
612 }
613
614
615
616 :(code)
617 void test_shift_right_logical_r32_with_cl() {
618 Reg[EBX].i = 26;
619 Reg[ECX].i = 1;
620 run(
621 "== code 0x1\n"
622
623 " d3 eb \n"
624
625 );
626 CHECK_TRACE_CONTENTS(
627 "run: operate on r/m32\n"
628 "run: r/m32 is EBX\n"
629 "run: subop: shift right by CL bits, while padding zeroes\n"
630
631 "run: storing 0x0000000d\n"
632 );
633 }
634
635 :(before "End Op d3 Subops")
636 case 5: {
637 trace(Callstack_depth+1, "run") << "subop: shift right by CL bits, while padding zeroes" << end();
638 uint8_t count = Reg[ECX].u & 0x1f;
639
640 if (count == 1) {
641 bool msb = (*arg1 & 0x80000000) >> 1;
642 bool pnsb = (*arg1 & 0x40000000);
643 OF = (msb != pnsb);
644 }
645 uint32_t* uarg1 = reinterpret_cast<uint32_t*>(arg1);
646 *uarg1 = (*uarg1 >> count);
647 ZF = (*uarg1 == 0);
648
649 SF = false;
650
651 trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *arg1 << end();
652 break;
653 }
654
655 :(code)
656 void test_shift_right_logical_odd_r32_with_cl() {
657 Reg[EBX].i = 27;
658 Reg[ECX].i = 1;
659 run(
660 "== code 0x1\n"
661
662 " d3 eb \n"
663
664 );
665 CHECK_TRACE_CONTENTS(
666 "run: operate on r/m32\n"
667 "run: r/m32 is EBX\n"
668 "run: subop: shift right by CL bits, while padding zeroes\n"
669
670 "run: storing 0x0000000d\n"
671 );
672 }
673
674 void test_shift_right_logical_negative_r32_with_cl() {
675 Reg[EBX].i = 0xfffffffd;
676 Reg[ECX].i = 1;
677 run(
678 "== code 0x1\n"
679
680 " d3 eb \n"
681
682 );
683 CHECK_TRACE_CONTENTS(
684 "run: operate on r/m32\n"
685 "run: r/m32 is EBX\n"
686 "run: subop: shift right by CL bits, while padding zeroes\n"
687 "run: storing 0x7ffffffe\n"
688 );
689 }
690
691
692
693 :(before "End Initialize Op Names")
694 put_new(Name, "21", "rm32 = bitwise AND of r32 with rm32 (and)");
695
696 :(code)
697 void test_and_r32_with_r32() {
698 Reg[EAX].i = 0x0a0b0c0d;
699 Reg[EBX].i = 0x000000ff;
700 run(
701 "== code 0x1\n"
702
703 " 21 d8 \n"
704
705 );
706 CHECK_TRACE_CONTENTS(
707 "run: and EBX with r/m32\n"
708 "run: r/m32 is EAX\n"
709 "run: storing 0x0000000d\n"
710 );
711 }
712
713 :(before "End Single-Byte Opcodes")
714 case 0x21: {
715 const uint8_t modrm = next();
716 const uint8_t arg2 = (modrm>>3)&0x7;
717 trace(Callstack_depth+1, "run") << "and " << rname(arg2) << " with r/m32" << end();
718
719
720 int32_t* signed_arg1 = effective_address(modrm);
721 *signed_arg1 &= Reg[arg2].i;
722 trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *signed_arg1 << end();
723 SF = (*signed_arg1 >> 31);
724 ZF = (*signed_arg1 == 0);
725 CF = false;
726 OF = false;
727 trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
728 break;
729 }
730
731
732
733 :(before "End Initialize Op Names")
734 put_new(Name, "09", "rm32 = bitwise OR of r32 with rm32 (or)");
735
736 :(code)
737 void test_or_r32_with_r32() {
738 Reg[EAX].i = 0x0a0b0c0d;
739 Reg[EBX].i = 0xa0b0c0d0;
740 run(
741 "== code 0x1\n"
742
743 " 09 d8 \n"
744
745 );
746 CHECK_TRACE_CONTENTS(
747 "run: or EBX with r/m32\n"
748 "run: r/m32 is EAX\n"
749 "run: storing 0xaabbccdd\n"
750 );
751 }
752
753 :(before "End Single-Byte Opcodes")
754 case 0x09: {
755 const uint8_t modrm = next();
756 const uint8_t arg2 = (modrm>>3)&0x7;
757 trace(Callstack_depth+1, "run") << "or " << rname(arg2) << " with r/m32" << end();
758
759
760 int32_t* signed_arg1 = effective_address(modrm);
761 *signed_arg1 |= Reg[arg2].i;
762 trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *signed_arg1 << end();
763 SF = (*signed_arg1 >> 31);
764 ZF = (*signed_arg1 == 0);
765 CF = false;
766 OF = false;
767 trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
768 break;
769 }
770
771
772
773 :(before "End Initialize Op Names")
774 put_new(Name, "31", "rm32 = bitwise XOR of r32 with rm32 (xor)");
775
776 :(code)
777 void test_xor_r32_with_r32() {
778 Reg[EAX].i = 0x0a0b0c0d;
779 Reg[EBX].i = 0xaabbc0d0;
780 run(
781 "== code 0x1\n"
782
783 " 31 d8 \n"
784
785 );
786 CHECK_TRACE_CONTENTS(
787 "run: xor EBX with r/m32\n"
788 "run: r/m32 is EAX\n"
789 "run: storing 0xa0b0ccdd\n"
790 );
791 }
792
793 :(before "End Single-Byte Opcodes")
794 case 0x31: {
795 const uint8_t modrm = next();
796 const uint8_t arg2 = (modrm>>3)&0x7;
797 trace(Callstack_depth+1, "run") << "xor " << rname(arg2) << " with r/m32" << end();
798
799
800 int32_t* signed_arg1 = effective_address(modrm);
801 *signed_arg1 ^= Reg[arg2].i;
802 trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *signed_arg1 << end();
803 SF = (*signed_arg1 >> 31);
804 ZF = (*signed_arg1 == 0);
805 CF = false;
806 OF = false;
807 trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
808 break;
809 }
810
811
812
813 :(code)
814 void test_not_r32() {
815 Reg[EBX].i = 0x0f0f00ff;
816 run(
817 "== code 0x1\n"
818
819 " f7 d3 \n"
820
821 );
822 CHECK_TRACE_CONTENTS(
823 "run: operate on r/m32\n"
824 "run: r/m32 is EBX\n"
825 "run: subop: not\n"
826 "run: storing 0xf0f0ff00\n"
827 );
828 }
829
830 :(before "End Op f7 Subops")
831 case 2: {
832 trace(Callstack_depth+1, "run") << "subop: not" << end();
833 *arg1 = ~(*arg1);
834 trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *arg1 << end();
835
836 break;
837 }
838
839
840
841 :(before "End Initialize Op Names")
842 put_new(Name, "39", "compare: set SF if rm32 < r32 (cmp)");
843
844 :(code)
845 void test_compare_r32_with_r32_greater() {
846 Reg[EAX].i = 0x0a0b0c0d;
847 Reg[EBX].i = 0x0a0b0c07;
848 run(
849 "== code 0x1\n"
850
851 " 39 d8 \n"
852
853 );
854 CHECK_TRACE_CONTENTS(
855 "run: compare r/m32 with EBX\n"
856 "run: r/m32 is EAX\n"
857 "run: SF=0; ZF=0; CF=0; OF=0\n"
858 );
859 }
860
861 :(before "End Single-Byte Opcodes")
862 case 0x39: {
863 const uint8_t modrm = next();
864 const uint8_t reg2 = (modrm>>3)&0x7;
865 trace(Callstack_depth+1, "run") << "compare r/m32 with " << rname(reg2) << end();
866 const int32_t* signed_arg1 = effective_address(modrm);
867 const int32_t signed_difference = *signed_arg1 - Reg[reg2].i;
868 SF = (signed_difference < 0);
869 ZF = (signed_difference == 0);
870 const int64_t signed_full_difference = static_cast<int64_t>(*signed_arg1) - Reg[reg2].i;
871 OF = (signed_difference != signed_full_difference);
872
873 const uint32_t unsigned_arg1 = static_cast<uint32_t>(*signed_arg1);
874 const uint32_t unsigned_difference = unsigned_arg1 - Reg[reg2].u;
875 const uint64_t unsigned_full_difference = static_cast<uint64_t>(unsigned_arg1) - Reg[reg2].u;
876 CF = (unsigned_difference != unsigned_full_difference);
877 trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
878 break;
879 }
880
881 :(code)
882 void test_compare_r32_with_r32_lesser_unsigned_and_signed() {
883 Reg[EAX].i = 0x0a0b0c07;
884 Reg[EBX].i = 0x0a0b0c0d;
885 run(
886 "== code 0x1\n"
887
888 " 39 d8 \n"
889
890 );
891 CHECK_TRACE_CONTENTS(
892 "run: compare r/m32 with EBX\n"
893 "run: r/m32 is EAX\n"
894 "run: SF=1; ZF=0; CF=1; OF=0\n"
895 );
896 }
897
898 void test_compare_r32_with_r32_lesser_unsigned_and_signed_due_to_overflow() {
899 Reg[EAX].i = 0x7fffffff;
900 Reg[EBX].i = 0x80000000;
901 run(
902 "== code 0x1\n"
903
904 " 39 d8 \n"
905
906 );
907 CHECK_TRACE_CONTENTS(
908 "run: compare r/m32 with EBX\n"
909 "run: r/m32 is EAX\n"
910 "run: SF=1; ZF=0; CF=1; OF=1\n"
911 );
912 }
913
914 void test_compare_r32_with_r32_lesser_signed() {
915 Reg[EAX].i = 0xffffffff;
916 Reg[EBX].i = 0x00000001;
917 run(
918 "== code 0x1\n"
919
920 " 39 d8 \n"
921
922 );
923 CHECK_TRACE_CONTENTS(
924 "run: compare r/m32 with EBX\n"
925 "run: r/m32 is EAX\n"
926 "run: SF=1; ZF=0; CF=0; OF=0\n"
927 );
928 }
929
930 void test_compare_r32_with_r32_lesser_unsigned() {
931 Reg[EAX].i = 0x00000001;
932 Reg[EBX].i = 0xffffffff;
933 run(
934 "== code 0x1\n"
935
936 " 39 d8 \n"
937
938 );
939 CHECK_TRACE_CONTENTS(
940 "run: compare r/m32 with EBX\n"
941 "run: r/m32 is EAX\n"
942 "run: SF=0; ZF=0; CF=1; OF=0\n"
943 );
944 }
945
946 void test_compare_r32_with_r32_equal() {
947 Reg[EAX].i = 0x0a0b0c0d;
948 Reg[EBX].i = 0x0a0b0c0d;
949 run(
950 "== code 0x1\n"
951
952 " 39 d8 \n"
953
954 );
955 CHECK_TRACE_CONTENTS(
956 "run: compare r/m32 with EBX\n"
957 "run: r/m32 is EAX\n"
958 "run: SF=0; ZF=1; CF=0; OF=0\n"
959 );
960 }
961
962
963
964 :(before "End Initialize Op Names")
965 put_new(Name, "89", "copy r32 to rm32 (mov)");
966
967 :(code)
968 void test_copy_r32_to_r32() {
969 Reg[EBX].i = 0xaf;
970 run(
971 "== code 0x1\n"
972
973 " 89 d8 \n"
974
975 );
976 CHECK_TRACE_CONTENTS(
977 "run: copy EBX to r/m32\n"
978 "run: r/m32 is EAX\n"
979 "run: storing 0x000000af\n"
980 );
981 }
982
983 :(before "End Single-Byte Opcodes")
984 case 0x89: {
985 const uint8_t modrm = next();
986 const uint8_t rsrc = (modrm>>3)&0x7;
987 trace(Callstack_depth+1, "run") << "copy " << rname(rsrc) << " to r/m32" << end();
988 int32_t* dest = effective_address(modrm);
989 *dest = Reg[rsrc].i;
990 trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *dest << end();
991 break;
992 }
993
994
995
996 :(before "End Initialize Op Names")
997 put_new(Name, "87", "swap the contents of r32 and rm32 (xchg)");
998
999 :(code)
1000 void test_xchg_r32_with_r32() {
1001 Reg[EBX].i = 0xaf;
1002 Reg[EAX].i = 0x2e;
1003 run(
1004 "== code 0x1\n"
1005
1006 " 87 d8 \n"
1007
1008 );
1009 CHECK_TRACE_CONTENTS(
1010 "run: exchange EBX with r/m32\n"
1011 "run: r/m32 is EAX\n"
1012 "run: storing 0x000000af in r/m32\n"
1013 "run: storing 0x0000002e in EBX\n"
1014 );
1015 }
1016
1017 :(before "End Single-Byte Opcodes")
1018 case 0x87: {
1019 const uint8_t modrm = next();
1020 const uint8_t reg2 = (modrm>>3)&0x7;
1021 trace(Callstack_depth+1, "run") << "exchange " << rname(reg2) << " with r/m32" << end();
1022 int32_t* arg1 = effective_address(modrm);
1023 const int32_t tmp = *arg1;
1024 *arg1 = Reg[reg2].i;
1025 Reg[reg2].i = tmp;
1026 trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *arg1 << " in r/m32" << end();
1027 trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << Reg[reg2].i << " in " << rname(reg2) << end();
1028 break;
1029 }
1030
1031
1032
1033 :(before "End Initialize Op Names")
1034 put_new(Name, "40", "increment EAX (inc)");
1035 put_new(Name, "41", "increment ECX (inc)");
1036 put_new(Name, "42", "increment EDX (inc)");
1037 put_new(Name, "43", "increment EBX (inc)");
1038 put_new(Name, "44", "increment ESP (inc)");
1039 put_new(Name, "45", "increment EBP (inc)");
1040 put_new(Name, "46", "increment ESI (inc)");
1041 put_new(Name, "47", "increment EDI (inc)");
1042
1043 :(code)
1044 void test_increment_r32() {
1045 Reg[ECX].u = 0x1f;
1046 run(
1047 "== code 0x1\n"
1048
1049 " 41 \n"
1050 );
1051 CHECK_TRACE_CONTENTS(
1052 "run: increment ECX\n"
1053 "run: storing value 0x00000020\n"
1054 );
1055 }
1056
1057 :(before "End Single-Byte Opcodes")
1058 case 0x40:
1059 case 0x41:
1060 case 0x42:
1061 case 0x43:
1062 case 0x44:
1063 case 0x45:
1064 case 0x46:
1065 case 0x47: {
1066 const uint8_t reg = op & 0x7;
1067 trace(Callstack_depth+1, "run") << "increment " << rname(reg) << end();
1068 ++Reg[reg].u;
1069 trace(Callstack_depth+1, "run") << "storing value 0x" << HEXWORD << Reg[reg].u << end();
1070 break;
1071 }
1072
1073 :(before "End Initialize Op Names")
1074 put_new(Name, "ff", "increment/decrement/jump/push/call rm32 based on subop (inc/dec/jmp/push/call)");
1075
1076 :(code)
1077 void test_increment_rm32() {
1078 Reg[EAX].u = 0x20;
1079 run(
1080 "== code 0x1\n"
1081
1082 " ff c0 \n"
1083
1084 );
1085 CHECK_TRACE_CONTENTS(
1086 "run: increment r/m32\n"
1087 "run: r/m32 is EAX\n"
1088 "run: storing value 0x00000021\n"
1089 );
1090 }
1091
1092 :(before "End Single-Byte Opcodes")
1093 case 0xff: {
1094 const uint8_t modrm = next();
1095 const uint8_t subop = (modrm>>3)&0x7;
1096 switch (subop) {
1097 case 0: {
1098 trace(Callstack_depth+1, "run") << "increment r/m32" << end();
1099 int32_t* arg = effective_address(modrm);
1100 ++*arg;
1101 trace(Callstack_depth+1, "run") << "storing value 0x" << HEXWORD << *arg << end();
1102 break;
1103 }
1104 default:
1105 cerr << "unrecognized subop for ff: " << HEXBYTE << NUM(subop) << '\n';
1106 exit(1);
1107
1108 }
1109 break;
1110 }
1111
1112
1113
1114 :(before "End Initialize Op Names")
1115 put_new(Name, "48", "decrement EAX (dec)");
1116 put_new(Name, "49", "decrement ECX (dec)");
1117 put_new(Name, "4a", "decrement EDX (dec)");
1118 put_new(Name, "4b", "decrement EBX (dec)");
1119 put_new(Name, "4c", "decrement ESP (dec)");
1120 put_new(Name, "4d", "decrement EBP (dec)");
1121 put_new(Name, "4e", "decrement ESI (dec)");
1122 put_new(Name, "4f", "decrement EDI (dec)");
1123
1124 :(code)
1125 void test_decrement_r32() {
1126 Reg[ECX].u = 0x1f;
1127 run(
1128 "== code 0x1\n"
1129
1130 " 49 \n"
1131 );
1132 CHECK_TRACE_CONTENTS(
1133 "run: decrement ECX\n"
1134 "run: storing value 0x0000001e\n"
1135 );
1136 }
1137
1138 :(before "End Single-Byte Opcodes")
1139 case 0x48:
1140 case 0x49:
1141 case 0x4a:
1142 case 0x4b:
1143 case 0x4c:
1144 case 0x4d:
1145 case 0x4e:
1146 case 0x4f: {
1147 const uint8_t reg = op & 0x7;
1148 trace(Callstack_depth+1, "run") << "decrement " << rname(reg) << end();
1149 --Reg[reg].u;
1150 trace(Callstack_depth+1, "run") << "storing value 0x" << HEXWORD << Reg[reg].u << end();
1151 break;
1152 }
1153
1154 :(code)
1155 void test_decrement_rm32() {
1156 Reg[EAX].u = 0x20;
1157 run(
1158 "== code 0x1\n"
1159
1160 " ff c8 \n"
1161
1162 );
1163 CHECK_TRACE_CONTENTS(
1164 "run: decrement r/m32\n"
1165 "run: r/m32 is EAX\n"
1166 "run: storing value 0x0000001f\n"
1167 );
1168 }
1169
1170 :(before "End Op ff Subops")
1171 case 1: {
1172 trace(Callstack_depth+1, "run") << "decrement r/m32" << end();
1173 int32_t* arg = effective_address(modrm);
1174 --*arg;
1175 trace(Callstack_depth+1, "run") << "storing value 0x" << HEXWORD << *arg << end();
1176 break;
1177 }
1178
1179
1180
1181 :(before "End Initialize Op Names")
1182 put_new(Name, "50", "push EAX to stack (push)");
1183 put_new(Name, "51", "push ECX to stack (push)");
1184 put_new(Name, "52", "push EDX to stack (push)");
1185 put_new(Name, "53", "push EBX to stack (push)");
1186 put_new(Name, "54", "push ESP to stack (push)");
1187 put_new(Name, "55", "push EBP to stack (push)");
1188 put_new(Name, "56", "push ESI to stack (push)");
1189 put_new(Name, "57", "push EDI to stack (push)");
1190
1191 :(code)
1192 void test_push_r32() {
1193 Mem.push_back(vma(0xbd000000));
1194 Reg[ESP].u = 0xbd000008;
1195 Reg[EBX].i = 0x0000000a;
1196 run(
1197 "== code 0x1\n"
1198
1199 " 53 \n"
1200 );
1201 CHECK_TRACE_CONTENTS(
1202 "run: push EBX\n"
1203 "run: decrementing ESP to 0xbd000004\n"
1204 "run: pushing value 0x0000000a\n"
1205 );
1206 }
1207
1208 :(before "End Single-Byte Opcodes")
1209 case 0x50:
1210 case 0x51:
1211 case 0x52:
1212 case 0x53:
1213 case 0x54:
1214 case 0x55:
1215 case 0x56:
1216 case 0x57: {
1217 uint8_t reg = op & 0x7;
1218 trace(Callstack_depth+1, "run") << "push " << rname(reg) << end();
1219
1220 push(Reg[reg].u);
1221 break;
1222 }
1223
1224
1225
1226 :(before "End Initialize Op Names")
1227 put_new(Name, "58", "pop top of stack to EAX (pop)");
1228 put_new(Name, "59", "pop top of stack to ECX (pop)");
1229 put_new(Name, "5a", "pop top of stack to EDX (pop)");
1230 put_new(Name, "5b", "pop top of stack to EBX (pop)");
1231 put_new(Name, "5c", "pop top of stack to ESP (pop)");
1232 put_new(Name, "5d", "pop top of stack to EBP (pop)");
1233 put_new(Name, "5e", "pop top of stack to ESI (pop)");
1234 put_new(Name, "5f", "pop top of stack to EDI (pop)");
1235
1236 :(code)
1237 void test_pop_r32() {
1238 Mem.push_back(vma(0xbd000000));
1239 Reg[ESP].u = 0xbd000008;
1240 write_mem_i32(0xbd000008, 0x0000000a);
1241 run(
1242 "== code 0x1\n"
1243
1244 " 5b \n"
1245 "== data 0x2000\n"
1246 "0a 00 00 00\n"
1247 );
1248 CHECK_TRACE_CONTENTS(
1249 "run: pop into EBX\n"
1250 "run: popping value 0x0000000a\n"
1251 "run: incrementing ESP to 0xbd00000c\n"
1252 );
1253 }
1254
1255 :(before "End Single-Byte Opcodes")
1256 case 0x58:
1257 case 0x59:
1258 case 0x5a:
1259 case 0x5b:
1260 case 0x5c:
1261 case 0x5d:
1262 case 0x5e:
1263 case 0x5f: {
1264 const uint8_t reg = op & 0x7;
1265 trace(Callstack_depth+1, "run") << "pop into " << rname(reg) << end();
1266
1267 Reg[reg].u = pop();
1268
1269 break;
1270 }
1271 :(code)
1272 uint32_t pop() {
1273 const uint32_t result = read_mem_u32(Reg[ESP].u);
1274 trace(Callstack_depth+1, "run") << "popping value 0x" << HEXWORD << result << end();
1275 Reg[ESP].u += 4;
1276 trace(Callstack_depth+1, "run") << "incrementing ESP to 0x" << HEXWORD << Reg[ESP].u << end();
1277 assert(Reg[ESP].u < AFTER_STACK);
1278 return result;
1279 }