1 //: Phase 3: Start running a loaded and transformed recipe.
  2 //:
  3 //:   The process of running Mu code:
  4 //:     load -> transform -> run
  5 //:
  6 //: So far we've seen recipes as lists of instructions, and instructions point
  7 //: at other recipes. To kick things off Mu needs to know how to run certain
  8 //: 'primitive' recipes. That will then give the ability to run recipes
  9 //: containing these primitives.
 10 //:
 11 //: This layer defines a skeleton with just two primitive recipes: IDLE which
 12 //: does nothing, and COPY, which can copy numbers from one memory location to
 13 //: another. Later layers will add more primitives.
 14 
 15 :(scenario copy_literal)
 16 def main [
 17   1:num <- copy 23
 18 ]
 19 +run: {1: "number"} <- copy {23: "literal"}
 20 +mem: storing 23 in location 1
 21 
 22 :(scenario copy)
 23 def main [
 24   1:num <- copy 23
 25   2:num <- copy 1:num
 26 ]
 27 +run: {2: "number"} <- copy {1: "number"}
 28 +mem: location 1 is 23
 29 +mem: storing 23 in location 2
 30 
 31 :(scenario copy_multiple)
 32 def main [
 33   1:num, 2:num <- copy 23, 24
 34 ]
 35 +mem: storing 23 in location 1
 36 +mem: storing 24 in location 2
 37 
 38 :(before "End Types")
 39 // Book-keeping while running a recipe.
 40 //: Later layers will replace this to support running multiple routines at once.
 41 struct routine {
 42   recipe_ordinal running_recipe;
 43   int running_step_index;
 44   routine(recipe_ordinal r) :running_recipe(r), running_step_index(0) {}
 45   bool completed() const;
 46   const vector<instruction>& steps() const;
 47 };
 48 
 49 :(before "End Globals")
 50 routine* Current_routine = NULL;
 51 :(before "End Setup")
 52 Current_routine = NULL;
 53 
 54 :(code)
 55 void run(const recipe_ordinal r) {
 56   routine rr(r);
 57   Current_routine = &rr;
 58   run_current_routine();
 59   Current_routine = NULL;
 60 }
 61 
 62 void run_current_routine() {
 63   while (should_continue_running(Current_routine)) {  // beware: may modify Current_routine
 64   ¦ // Running One Instruction
 65   ¦ if (current_instruction().is_label) { ++current_step_index();  continue; }
 66   ¦ trace(Initial_callstack_depth + Trace_stream->callstack_depth, "run") << to_string(current_instruction()) << end();
 67   ¦ if (get_or_insert(Memory, 0) != 0) {
 68   ¦ ¦ raise << "something wrote to location 0; this should never happen\n" << end();
 69   ¦ ¦ put(Memory, 0, 0);
 70   ¦ }
 71   ¦ // read all ingredients from memory, each potentially spanning multiple locations
 72   ¦ vector<vector<double> > ingredients;
 73   ¦ if (should_copy_ingredients()) {
 74   ¦ ¦ for (int i = 0;  i < SIZE(current_instruction().ingredients);  ++i)
 75   ¦ ¦ ¦ ingredients.push_back(read_memory(current_instruction().ingredients.at(i)));
 76   ¦ }
 77   ¦ // instructions below will write to 'products'
 78   ¦ vector<vector<double> > products;
 79   ¦ //: This will be a large switch that later layers will often insert cases
 80   ¦ //: into. Never call 'continue' within it. Instead, we'll explicitly
 81   ¦ //: control which of the following stages after the switch we run for each
 82   ¦ //: instruction.
 83   ¦ bool write_products = true;
 84   ¦ bool fall_through_to_next_instruction = true;
 85   ¦ switch (current_instruction().operation) {
 86   ¦ ¦ // Primitive Recipe Implementations
 87   ¦ ¦ case COPY: {
 88   ¦ ¦ ¦ copy(ingredients.begin(), ingredients.end(), inserter(products, products.begin()));
 89   ¦ ¦ ¦ break;
 90   ¦ ¦ }
 91   ¦ ¦ // End Primitive Recipe Implementations
 92   ¦ ¦ default: {
 93   ¦ ¦ ¦ cout << "not a primitive op: " << current_instruction().operation << '\n';
 94   ¦ ¦ }
 95   ¦ }
 96   ¦ //: used by a later layer
 97   ¦ if (write_products) {
 98   ¦ ¦ Writing_products_of_instruction = true;
 99   ¦ ¦ if (SIZE(products) < SIZE(current_instruction().products)) {
100   ¦ ¦ ¦ raise << SIZE(products) << " vs " << SIZE(current_instruction().products) << ": failed to write to all products in '" << to_original_string(current_instruction()) << "'\n" << end();
101   ¦ ¦ }
102   ¦ ¦ else {
103   ¦ ¦ ¦ for (int i = 0;  i < SIZE(current_instruction().products);  ++i)
104   ¦ ¦ ¦ ¦ write_memory(current_instruction().products.at(i), products.at(i));
105   ¦ ¦ }
106   ¦ ¦ Writing_products_of_instruction = false;
107   ¦ }
108   ¦ // End Running One Instruction
109   ¦ if (fall_through_to_next_instruction)
110   ¦ ¦ ++current_step_index();
111   }
112   stop_running_current_routine:;
113 }
114 :(before "End Globals")
115 bool Writing_products_of_instruction = false;
116 
117 :(code)
118 //: hook replaced in a later layer
119 bool should_continue_running(const routine* current_routine) {
120   assert(current_routine == Current_routine);  // argument passed in just to make caller readable above
121   return !Current_routine->completed();
122 }
123 
124 bool should_copy_ingredients() {
125   // End should_copy_ingredients Special-cases
126   return true;
127 }
128 
129 //: Some helpers.
130 //: Important that they return references into the current routine.
131 
132 //: hook replaced in a later layer
133 int& current_step_index() {
134   return Current_routine->running_step_index;
135 }
136 
137 //: hook replaced in a later layer
138 recipe_ordinal currently_running_recipe() {
139   return Current_routine->running_recipe;
140 }
141 
142 //: hook replaced in a later layer
143 const string& current_recipe_name() {
144   return get(Recipe, Current_routine->running_recipe).name;
145 }
146 
147 //: hook replaced in a later layer
148 const recipe& current_recipe() {
149   return get(Recipe, Current_routine->running_recipe);
150 }
151 
152 //: hook replaced in a later layer
153 const instruction& current_instruction() {
154   return get(Recipe, Current_routine->running_recipe).steps.at(Current_routine->running_step_index);
155 }
156 
157 //: hook replaced in a later layer
158 bool routine::completed() const {
159   return running_step_index >= SIZE(get(Recipe, running_recipe).steps);
160 }
161 
162 //: hook replaced in a later layer
163 const vector<instruction>& routine::steps() const {
164   return get(Recipe, running_recipe).steps;
165 }
166 
167 //:: Startup flow
168 
169 //: Step 1: load all .mu files with numeric prefixes (in order)
170 :(before "End Load Recipes")
171 // Load Mu Prelude
172 //? Save_trace = true;
173 //? START_TRACING_UNTIL_END_OF_SCOPE;
174 load_file_or_directory("core.mu");
175 //? DUMP("");
176 //? exit(0);
177 
178 //: Step 2: load any .mu files provided at the commandline
179 :(before "End Commandline Parsing")
180 // Check For .mu Files
181 //? START_TRACING_UNTIL_END_OF_SCOPE
182 //? Dump_trace = true;
183 if (argc > 1) {
184   // skip argv[0]
185   ++argv;
186   --argc;
187   while (argc > 0) {
188   ¦ // ignore argv past '--'; that's commandline args for 'main'
189   ¦ if (string(*argv) == "--") break;
190   ¦ if (starts_with(*argv, "--"))
191   ¦ ¦ cerr << "treating " << *argv << " as a file rather than an option\n";
192   ¦ load_file_or_directory(*argv);
193   ¦ --argc;
194   ¦ ++argv;
195   }
196   if (Run_tests) Recipe.erase(get(Recipe_ordinal, "main"));
197 }
198 transform_all();
199 //? cerr << to_original_string(get(Recipe, get(Recipe_ordinal, "event-loop"))) << '\n';
200 //? DUMP("");
201 //? exit(0);
202 if (trace_contains_errors()) return 1;
203 save_snapshots();
204 
205 //: Step 3: if we aren't running tests, locate a recipe called 'main' and
206 //: start running it.
207 :(before "End Main")
208 if (!Run_tests && contains_key(Recipe_ordinal, "main") && contains_key(Recipe, get(Recipe_ordinal, "main"))) {
209   // Running Main
210   setup();
211   if (Start_tracing) {
212   ¦ Trace_stream = new trace_stream;
213   ¦ Save_trace = true;
214   }
215   trace(2, "run") << "=== Starting to run" << end();
216   assert(Num_calls_to_transform_all == 1);
217   run_main(argc, argv);
218   teardown();
219 }
220 :(code)
221 void run_main(int argc, char* argv[]) {
222   recipe_ordinal r = get(Recipe_ordinal, "main");
223   if (r) run(r);
224 }
225 
226 //: By default we don't maintain the trace while running main because its
227 //: overheads can grow rapidly. However, it's useful when debugging.
228 :(before "End Globals")
229 bool Start_tracing = false;
230 :(before "End Commandline Options(*arg)")
231 else if (is_equal(*arg, "--trace")) {
232   Start_tracing = true;
233 }
234 
235 :(code)
236 void cleanup_main() {
237   if (Save_trace && Trace_stream) {
238   ¦ cerr << "writing trace to 'last_run'\n";
239   ¦ ofstream fout("last_run");
240   ¦ fout << Trace_stream->readable_contents("");
241   ¦ fout.close();
242   }
243   if (Trace_stream) delete Trace_stream, Trace_stream = NULL;
244 }
245 :(before "End One-time Setup")
246 atexit(cleanup_main);
247 
248 :(code)
249 void load_file_or_directory(string filename) {
250   if (is_directory(filename)) {
251   ¦ load_all(filename);
252   ¦ return;
253   }
254   ifstream fin(filename.c_str());
255   if (!fin) {
256   ¦ cerr << "no such file '" << filename << "'\n" << end();  // don't raise, just warn. just in case it's just a name for a scenario to run.
257   ¦ return;
258   }
259   trace(9990, "load") << "=== " << filename << end();
260   load(fin);
261   fin.close();
262 }
263 
264 bool is_directory(string path) {
265   struct stat info;
266   if (stat(path.c_str(), &info)) return false;  // error
267   return info.st_mode & S_IFDIR;
268 }
269 
270 void load_all(string dir) {
271   dirent** files;
272   int num_files = scandir(dir.c_str(), &files, NULL, alphasort);
273   for (int i = 0;  i < num_files;  ++i) {
274   ¦ string curr_file = files[i]->d_name;
275   ¦ if (isdigit(curr_file.at(0)))
276   ¦ ¦ load_file_or_directory(dir+'/'+curr_file);
277   ¦ free(files[i]);
278   ¦ files[i] = NULL;
279   }
280   free(files);
281 }
282 :(before "End Includes")
283 #include <dirent.h>
284 #include <sys/stat.h>
285 
286 //:: Reading from memory, writing to memory.
287 
288 :(code)
289 vector<double> read_memory(reagent/*copy*/ x) {
290   // Begin Preprocess read_memory(x)
291   vector<double> result;
292   if (is_literal(x)) {
293   ¦ result.push_back(x.value);
294   ¦ return result;
295   }
296   // End Preprocess read_memory(x)
297   int size = size_of(x);
298   for (int offset = 0;  offset < size;  ++offset) {
299   ¦ double val = get_or_insert(Memory, x.value+offset);
300   ¦ trace(9999, "mem") << "location " << x.value+offset << " is " << no_scientific(val) << end();
301   ¦ result.push_back(val);
302   }
303   return result;
304 }
305 
306 void write_memory(reagent/*copy*/ x, const vector<double>& data) {
307   assert(Current_routine);  // run-time only
308   // Begin Preprocess write_memory(x, data)
309   if (!x.type) {
310   ¦ raise << "can't write to '" << to_string(x) << "'; no type\n" << end();
311   ¦ return;
312   }
313   if (is_dummy(x)) return;
314   if (is_literal(x)) return;
315   // End Preprocess write_memory(x, data)
316   if (x.value == 0) {
317   ¦ raise << "can't write to location 0 in '" << to_original_string(current_instruction()) << "'\n" << end();
318   ¦ return;
319   }
320   if (size_mismatch(x, data)) {
321   ¦ raise << maybe(current_recipe_name()) << "size mismatch in storing to '" << x.original_string << "' (" << size_of(x) << " vs " << SIZE(data) << ") at '" << to_original_string(current_instruction()) << "'\n" << end();
322   ¦ return;
323   }
324   // End write_memory(x) Special-cases
325   for (int offset = 0;  offset < SIZE(data);  ++offset) {
326   ¦ assert(x.value+offset > 0);
327   ¦ trace(9999, "mem") << "storing " << no_scientific(data.at(offset)) << " in location " << x.value+offset << end();
328   ¦ put(Memory, x.value+offset, data.at(offset));
329   }
330 }
331 
332 :(code)
333 int size_of(const reagent& r) {
334   if (!r.type) return 0;
335   // End size_of(reagent r) Special-cases
336   return size_of(r.type);
337 }
338 int size_of(const type_tree* type) {
339   if (!type) return 0;
340   if (type->atom) {
341   ¦ if (type->value == -1) return 1;  // error value, but we'll raise it elsewhere
342   ¦ if (type->value == 0) return 1;
343   ¦ // End size_of(type) Atom Special-cases
344   }
345   else {
346   ¦ if (!type->left->atom) {
347   ¦ ¦ raise << "invalid type " << to_string(type) << '\n' << end();
348   ¦ ¦ return 0;
349   ¦ }
350   ¦ if (type->left->value == get(Type_ordinal, "address")) return 1;
351   ¦ // End size_of(type) Non-atom Special-cases
352   }
353   // End size_of(type) Special-cases
354   return 1;
355 }
356 
357 bool size_mismatch(const reagent& x, const vector<double>& data) {
358   if (!x.type) return true;
359   // End size_mismatch(x) Special-cases
360 //?   if (size_of(x) != SIZE(data)) cerr << size_of(x) << " vs " << SIZE(data) << '\n';
361   return size_of(x) != SIZE(data);
362 }
363 
364 bool is_literal(const reagent& r) {
365   return is_literal(r.type);
366 }
367 bool is_literal(const type_tree* type) {
368   if (!type) return false;
369   if (!type->atom) return false;
370   return type->value == 0;
371 }
372 
373 bool scalar(const vector<int>& x) {
374   return SIZE(x) == 1;
375 }
376 bool scalar(const vector<double>& x) {
377   return SIZE(x) == 1;
378 }
379 
380 // helper for tests
381 void run(const string& form) {
382   vector<recipe_ordinal> tmp = load(form);
383   transform_all();
384   if (tmp.empty()) return;
385   if (trace_contains_errors()) return;
386   // if a test defines main, it probably wants to start there regardless of
387   // definition order
388   if (contains_key(Recipe, get(Recipe_ordinal, "main")))
389   ¦ run(get(Recipe_ordinal, "main"));
390   else
391   ¦ run(tmp.front());
392 }
393 
394 :(scenario run_label)
395 def main [
396   +foo
397   1:num <- copy 23
398   2:num <- copy 1:num
399 ]
400 +run: {1: "number"} <- copy {23: "literal"}
401 +run: {2: "number"} <- copy {1: "number"}
402 -run: +foo
403 
404 :(scenario run_dummy)
405 def main [
406   _ <- copy 0
407 ]
408 +run: _ <- copy {0: "literal"}
409 
410 :(scenario write_to_0_disallowed)
411 % Hide_errors = true;
412 def main [
413   0:num <- copy 34
414 ]
415 -mem: storing 34 in location 0
416 
417 //: Mu is robust to various combinations of commas and spaces. You just have
418 //: to put spaces around the '<-'.
419 
420 :(scenario comma_without_space)
421 def main [
422   1:num, 2:num <- copy 2,2
423 ]
424 +mem: storing 2 in location 1
425 
426 :(scenario space_without_comma)
427 def main [
428   1:num, 2:num <- copy 2 2
429 ]
430 +mem: storing 2 in location 1
431 
432 :(scenario comma_before_space)
433 def main [
434   1:num, 2:num <- copy 2, 2
435 ]
436 +mem: storing 2 in location 1
437 
438 :(scenario comma_after_space)
439 def main [
440   1:num, 2:num <- copy 2 ,2
441 ]
442 +mem: storing 2 in location 1
443 
444 //:: Counters for trying to understand where Mu programs are spending their
445 //:: time.
446 
447 :(before "End Globals")
448 bool Run_profiler = false;
449 // We'll key profile information by recipe_ordinal rather than name because
450 // it's more efficient, and because later layers will show more than just the
451 // name of a recipe.
452 //
453 // One drawback: if you're clearing recipes your profile will be inaccurate.
454 // So far that happens in tests, and in `run-sandboxed` in a later layer.
455 map<recipe_ordinal, int> Instructions_running;
456 :(before "End Commandline Options(*arg)")
457 else if (is_equal(*arg, "--profile")) {
458   Run_profiler = true;
459 }
460 :(after "Running One Instruction")
461 if (Run_profiler) Instructions_running[currently_running_recipe()]++;
462 :(before "End One-time Setup")
463 atexit(dump_profile);
464 :(code)
465 void dump_profile() {
466   if (!Run_profiler) return;
467   if (Run_tests) {
468   ¦ cerr << "It's not a good idea to profile a run with tests, since tests can create conflicting recipes and mislead you. To try it anyway, comment out this check in the code.\n";
469   ¦ return;
470   }
471   ofstream fout;
472   fout.open("profile.instructions");
473   if (fout) {
474   ¦ for (map<recipe_ordinal, int>::iterator p = Instructions_running.begin();  p != Instructions_running.end();  ++p) {
475   ¦ ¦ fout << std::setw(9) << p->second << ' ' << header_label(p->first) << '\n';
476   ¦ }
477   }
478   fout.close();
479   // End dump_profile
480 }
481 
482 // overridden in a later layer
483 string header_label(const recipe_ordinal r) {
484   return get(Recipe, r).name;
485 }